These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35709838)

  • 1. New generation advanced nanomaterials for photocatalytic abatement of phenolic compounds.
    Yadav G; Ahmaruzzaman M
    Chemosphere; 2022 Oct; 304():135297. PubMed ID: 35709838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Green Nanomaterials for Photocatalytic Degradation of Toxic Organic Compounds.
    Ahmed S; Ara G; Susan MABH
    Curr Pharm Biotechnol; 2023; 24(1):118-144. PubMed ID: 34970950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenolic compounds degradation: Insight into the role and evidence of oxygen vacancy defects engineering on nanomaterials.
    Kumar A; Raizada P; Khan AAP; Nguyen VH; Van Le Q; Singh A; Saini V; Selvasembian R; Huynh TT; Singh P
    Sci Total Environ; 2021 Dec; 800():149410. PubMed ID: 34391150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prospecting carbon-based nanomaterials for the treatment and degradation of endocrine-disrupting pollutants.
    González-González RB; Rodríguez-Hernández JA; Araújo RG; Sharma P; Parra-Saldívar R; Ramirez-Mendoza RA; Bilal M; Iqbal HMN
    Chemosphere; 2022 Jun; 297():134172. PubMed ID: 35248594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of phenolic compounds on low-cost adsorbents: A review.
    Ahmaruzzaman M
    Adv Colloid Interface Sci; 2008 Nov; 143(1-2):48-67. PubMed ID: 18786665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of phenol photodegradation efficiency by a combined g-C3N4/Fe(III)/persulfate system.
    Hu JY; Tian K; Jiang H
    Chemosphere; 2016 Apr; 148():34-40. PubMed ID: 26802260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergetic effect between photocatalytic degradation and adsorption processes on the removal of phenolic compounds from olive mill wastewater.
    Baransi K; Dubowski Y; Sabbah I
    Water Res; 2012 Mar; 46(3):789-98. PubMed ID: 22153960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review.
    Ahmed S; Rasul MG; Brown R; Hashib MA
    J Environ Manage; 2011 Mar; 92(3):311-30. PubMed ID: 20950926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced photocatalytic performance of PdO-loaded heterostructured nanobelts to degrade phenol.
    Wang R; Du L; Gao W; Li J; Tsona NT; Zhang X; Hu X; Wang W; Liu H
    Chemosphere; 2021 Aug; 276():130266. PubMed ID: 34088107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanomaterials for Removal of Phenolic Derivatives from Water Systems: Progress and Future Outlooks.
    Ramírez-Hernández M; Cox J; Thomas B; Asefa T
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preferential and efficient degradation of phenolic pollutants with cooperative hydrogen-bond interactions in photocatalytic process.
    Zhang J; Xie M; Zhao H; Zhang LR; Wei G; Zhao G
    Chemosphere; 2021 Apr; 269():129404. PubMed ID: 33385675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solar heterogeneous photocatalytic degradation of phenol on TiO
    Silerio-Vázquez F; Alarcón-Herrera MT; Proal-Nájera JB
    Environ Sci Pollut Res Int; 2022 Jun; 29(28):42319-42330. PubMed ID: 35224700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of photocatalytic behavior of modified ZnS:Mn/MWCNTs nanocomposite for organic pollutants effective photodegradation.
    Sharifi A; Montazerghaem L; Naeimi A; Abhari AR; Vafaee M; Ali GAM; Sadegh H
    J Environ Manage; 2019 Oct; 247():624-632. PubMed ID: 31279139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesopolymer modified with palladium phthalocyaninesulfonate as a versatile photocatalyst for phenol and bisphenol A degradation under visible light irradiation.
    Xing R; Wu L; Fei Z; Wu P
    J Environ Sci (China); 2013 Aug; 25(8):1687-95. PubMed ID: 24520709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioremediation of phenolic pollutants by algae - current status and challenges.
    Wu P; Zhang Z; Luo Y; Bai Y; Fan J
    Bioresour Technol; 2022 Apr; 350():126930. PubMed ID: 35247559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual responsive magnetic Au@Ni nanostructures loaded reduced graphene oxide sheets for colorimetric detection and photocatalytic degradation of toxic phenolic compounds.
    Darabdhara G; Das MR
    J Hazard Mater; 2019 Apr; 368():365-377. PubMed ID: 30690389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review on self-modification of zirconium dioxide nanocatalysts with enhanced visible-light-driven photodegradation of organic pollutants.
    Hassan NS; Jalil AA
    J Hazard Mater; 2022 Feb; 423(Pt A):126996. PubMed ID: 34461544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper Sulfide Based Heterojunctions as Photocatalysts for Dyes Photodegradation.
    Isac L; Cazan C; Enesca A; Andronic L
    Front Chem; 2019; 7():694. PubMed ID: 31709227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Branch-specific detection of phenols and assessment of ground water solubility].
    Fischer F; Kerndorff H; Kühn S
    Schriftenr Ver Wasser Boden Lufthyg; 2000; 107():I-X, 1-108. PubMed ID: 11225284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH dependent synthesis and characterization of bismuth molybdate nanostructure for photocatalysis degradation of organic pollutants.
    Abid HN; Al-Keisy A; Ahmed DS; Salih AT; Khammas A
    Environ Sci Pollut Res Int; 2022 May; 29(25):37633-37643. PubMed ID: 35066842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.