These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 35710049)
1. Valorization of hydrolysis lignin from a spruce-based biorefinery by applying γ-valerolactone treatment. Momayez F; Hedenström M; Stagge S; Jönsson LJ; Martín C Bioresour Technol; 2022 Sep; 359():127466. PubMed ID: 35710049 [TBL] [Abstract][Full Text] [Related]
2. Fast dissolution pretreatment of the corn stover in gamma-valerolactone promoted by ionic liquids: Selective delignification and enhanced enzymatic saccharification. Jin L; Yu X; Peng C; Guo Y; Zhang L; Xu Q; Zhao ZK; Liu Y; Xie H Bioresour Technol; 2018 Dec; 270():537-544. PubMed ID: 30248653 [TBL] [Abstract][Full Text] [Related]
3. Integration of mild acid hydrolysis in γ-valerolactone/water system for enhancement of enzymatic saccharification from cotton stalk. Wu M; Yan ZY; Zhang XM; Xu F; Sun RC Bioresour Technol; 2016 Jan; 200():23-8. PubMed ID: 26476160 [TBL] [Abstract][Full Text] [Related]
4. Chemical and thermal analysis of lignin streams from Robinia pseudoacacia L. generated during organosolv and acid hydrolysis pre-treatments and subsequent enzymatic hydrolysis. Martín-Sampedro R; Santos JI; Eugenio ME; Wicklein B; Jiménez-López L; Ibarra D Int J Biol Macromol; 2019 Nov; 140():311-322. PubMed ID: 31408656 [TBL] [Abstract][Full Text] [Related]
5. Characterization of lignins from Populus alba L. generated as by-products in different transformation processes: Kraft pulping, organosolv and acid hydrolysis. Martín-Sampedro R; Santos JI; Fillat Ú; Wicklein B; Eugenio ME; Ibarra D Int J Biol Macromol; 2019 Apr; 126():18-29. PubMed ID: 30572057 [TBL] [Abstract][Full Text] [Related]
6. Solubility of Organosolv Lignin in γ-Valerolactone/Water Binary Mixtures. Lê HQ; Zaitseva A; Pokki JP; Ståhl M; Alopaeus V; Sixta H ChemSusChem; 2016 Oct; 9(20):2939-2947. PubMed ID: 27717159 [TBL] [Abstract][Full Text] [Related]
7. Efficient degradation of lignin in raw wood via pretreatment with heteropoly acids in γ-valerolactone/water. Zhang L; Zheng W; Wang Z; Ma Y; Jiang L; Wang T Bioresour Technol; 2018 Aug; 261():70-75. PubMed ID: 29653336 [TBL] [Abstract][Full Text] [Related]
8. Properties versus application requirements of solubilized lignins from an elm clone during different pre-treatments. Eugenio ME; Martín-Sampedro R; Santos JI; Wicklein B; Martín JA; Ibarra D Int J Biol Macromol; 2021 Jun; 181():99-111. PubMed ID: 33757853 [TBL] [Abstract][Full Text] [Related]
10. Valorization of Miscanthus × giganteus by γ-Valerolactone/H Ding D; Hu J; Hui L; Liu Z; Shao L Carbohydr Polym; 2021 Oct; 270():118388. PubMed ID: 34364629 [TBL] [Abstract][Full Text] [Related]
11. Strategies for the Removal of Polysaccharides from Biorefinery Lignins: Process Optimization and Techno Economic Evaluation. Corderi S; Renders T; Servaes K; Vanbroekhoven K; De Roo T; Elst K Molecules; 2021 Jun; 26(11):. PubMed ID: 34206027 [TBL] [Abstract][Full Text] [Related]
12. Lignin Nanoparticles Produced from Wheat Straw Black Liquor Using γ-Valerolactone. Zhao L; Wang Y; Wang Q; Liu S; Ji X Polymers (Basel); 2023 Dec; 16(1):. PubMed ID: 38201715 [TBL] [Abstract][Full Text] [Related]
13. Modification of the aspen lignin structure during integrated fractionation process of autohydrolysis and formic acid delignification. Shao Z; Fu Y; Wang P; Zhang Y; Qin M; Li X; Zhang F Int J Biol Macromol; 2020 Dec; 165(Pt B):1727-1737. PubMed ID: 33058978 [TBL] [Abstract][Full Text] [Related]
14. Extraction and Characterization of Acidolysis Lignin from Turkey Oak ( Bergamasco S; Zikeli F; Vinciguerra V; Sobolev AP; Scarnati L; Tofani G; Scarascia Mugnozza G; Romagnoli M Polymers (Basel); 2023 Aug; 15(17):. PubMed ID: 37688217 [TBL] [Abstract][Full Text] [Related]
15. Valorization of bamboo by γ-valerolactone/acid/water to produce digestible cellulose, degraded sugars and lignin. Li SX; Li MF; Yu P; Fan YM; Shou JN; Sun RC Bioresour Technol; 2017 Apr; 230():90-96. PubMed ID: 28161625 [TBL] [Abstract][Full Text] [Related]
16. Microwave-Assisted γ-Valerolactone Production for Biomass Lignin Extraction: A Cascade Protocol. Tabasso S; Grillo G; Carnaroglio D; Calcio Gaudino E; Cravotto G Molecules; 2016 Mar; 21(4):413. PubMed ID: 27023511 [TBL] [Abstract][Full Text] [Related]
17. Revealing Structural Modifications of Lignin in Acidic γ-Valerolactone-H Li S; Zhao C; Yue F; Lu F Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31948026 [TBL] [Abstract][Full Text] [Related]
18. Characterization of Miscanthus giganteus lignin isolated by ethanol organosolv process under reflux condition. Bauer S; Sorek H; Mitchell VD; Ibáñez AB; Wemmer DE J Agric Food Chem; 2012 Aug; 60(33):8203-12. PubMed ID: 22823333 [TBL] [Abstract][Full Text] [Related]
19. Nonenzymatic sugar production from biomass using biomass-derived γ-valerolactone. Luterbacher JS; Rand JM; Alonso DM; Han J; Youngquist JT; Maravelias CT; Pfleger BF; Dumesic JA Science; 2014 Jan; 343(6168):277-80. PubMed ID: 24436415 [TBL] [Abstract][Full Text] [Related]
20. Bergs M; Völkering G; Kraska T; Pude R; Do XT; Kusch P; Monakhova Y; Konow C; Schulze M Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30857288 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]