These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35710224)

  • 1. Trunk muscle activity during holding two types of dynamic loads in subjects with nonspecific low back pain.
    Ershad N; Kahrizi S; Parnianpour M; Azghani MR; Khalaf K
    J Bodyw Mov Ther; 2022 Jul; 31():7-15. PubMed ID: 35710224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparisons of lumbar spine loads and kinematics in healthy and non-specific low back pain individuals during unstable lifting activities.
    Heidari E; Arjmand N; Kahrizi S
    J Biomech; 2022 Nov; 144():111344. PubMed ID: 36270086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of trunk muscle activity in chronic low back pain patients and healthy individuals during holding loads.
    Ershad N; Kahrizi S; Abadi MF; Zadeh SF
    J Back Musculoskelet Rehabil; 2009; 22(3):165-72. PubMed ID: 20023346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of low back pain on the kinetics and kinematics of the lumbar spine - a combined in vivo and in silico investigation.
    Firouzabadi A; Arjmand N; Zhang T; Pumberger M; Schmidt H
    J Biomech; 2024 Feb; 164():111954. PubMed ID: 38310006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the weight configuration of hand load on trunk musculature during static weight holding.
    Madinei S; Ning X
    Ergonomics; 2018 Jun; 61(6):831-838. PubMed ID: 28965479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Difference of the thickness and activation of trunk muscles during static stoop lift at different loads between subjects with and without low back pain.
    Yang HS
    J Back Musculoskelet Rehabil; 2018; 31(3):481-488. PubMed ID: 29332031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transverse-contour modeling of trunk muscle-distributed forces and spinal loads during lifting and twisting.
    Davis JR; Mirka GA
    Spine (Phila Pa 1976); 2000 Jan; 25(2):180-9. PubMed ID: 10685481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical analysis of different back-supporting exoskeletons regarding musculoskeletal loading during lifting and holding.
    Johns J; Schultes I; Heinrich K; Potthast W; Glitsch U
    J Biomech; 2024 May; 168():112125. PubMed ID: 38688184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The in vivo dynamic response of the spine to perturbations causing rapid flexion: effects of pre-load and step input magnitude.
    Krajcarski SR; Potvin JR; Chiang J
    Clin Biomech (Bristol); 1999 Jan; 14(1):54-62. PubMed ID: 10619090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of chronic low back pain on trunk muscle activations in target reaching movements with various loads.
    Thomas JS; France CR; Sha D; Vander Wiele N; Moenter S; Swank K
    Spine (Phila Pa 1976); 2007 Dec; 32(26):E801-8. PubMed ID: 18091474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle activity and low back loads under external shear and compressive loading.
    Callaghan JP; McGill SM
    Spine (Phila Pa 1976); 1995 May; 20(9):992-8. PubMed ID: 7631247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An EMG-assisted model of trunk loading during free-dynamic lifting.
    Granata KP; Marras WS
    J Biomech; 1995 Nov; 28(11):1309-17. PubMed ID: 8522544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating lumbar spine loading when using back-support exoskeletons in lifting tasks.
    Madinei S; Nussbaum MA
    J Biomech; 2023 Jan; 147():111439. PubMed ID: 36638578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of spinal internal loads and lumbar curvature under holding static load at different trunk and knee positions.
    Kahrizi S; Parnianpour M; Firoozabadi SM; Kasemnejad A; Karimi E
    Pak J Biol Sci; 2007 Apr; 10(7):1036-43. PubMed ID: 19070047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A functional subdivision of hip, abdominal, and back muscles during asymmetric lifting.
    Danneels LA; Vanderstraeten GG; Cambier DC; Witvrouw EE; Stevens VK; De Cuyper HJ
    Spine (Phila Pa 1976); 2001 Mar; 26(6):E114-21. PubMed ID: 11246393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of a lifting belt on spine moments and muscle recruitments after unexpected sudden loading.
    Lavender SA; Shakeel K; Andersson GB; Thomas JS
    Spine (Phila Pa 1976); 2000 Jun; 25(12):1569-78. PubMed ID: 10851108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered trunk muscle recruitment patterns during lifting in individuals in remission from recurrent low back pain.
    Suehiro T; Ishida H; Kobara K; Osaka H; Watanabe S
    J Electromyogr Kinesiol; 2018 Apr; 39():128-133. PubMed ID: 29486424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of on-body lift assistive device on the lumbar 3D dynamic moments and EMG during asymmetric freestyle lifting.
    Abdoli-E M; Stevenson JM
    Clin Biomech (Bristol); 2008 Mar; 23(3):372-80. PubMed ID: 18093709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of squat and stoop dynamic liftings: muscle forces and internal spinal loads.
    Bazrgari B; Shirazi-Adl A; Arjmand N
    Eur Spine J; 2007 May; 16(5):687-99. PubMed ID: 17103232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of lumbar spinal loading and trunk muscle forces during asymmetric lifting tasks: application of whole-body musculoskeletal modelling in OpenSim.
    Kim HK; Zhang Y
    Ergonomics; 2017 Apr; 60(4):563-576. PubMed ID: 27194401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.