BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 35710324)

  • 1. Empowering the discovery of novel target-disease associations via machine learning approaches in the open targets platform.
    Han Y; Klinger K; Rajpal DK; Zhu C; Teeple E
    BMC Bioinformatics; 2022 Jun; 23(1):232. PubMed ID: 35710324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning prediction of oncology drug targets based on protein and network properties.
    Dezső Z; Ceccarelli M
    BMC Bioinformatics; 2020 Mar; 21(1):104. PubMed ID: 32171238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrative network-based approach for drug target indication expansion.
    Han Y; Wang C; Klinger K; Rajpal DK; Zhu C
    PLoS One; 2021; 16(7):e0253614. PubMed ID: 34242265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated annotation of disease subtypes.
    Ofer D; Linial M
    J Biomed Inform; 2024 Jun; 154():104650. PubMed ID: 38701887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating Biological Networks for Drug Target Prediction and Prioritization.
    Ji X; Freudenberg JM; Agarwal P
    Methods Mol Biol; 2019; 1903():203-218. PubMed ID: 30547444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug repurposing and prediction of multiple interaction types via graph embedding.
    Amiri Souri E; Chenoweth A; Karagiannis SN; Tsoka S
    BMC Bioinformatics; 2023 May; 24(1):202. PubMed ID: 37193964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the relationship between hub proteins and drug targets based on GO and intrinsic disorder.
    Fu Y; Guo Y; Wang Y; Luo J; Pu X; Li M; Zhang Z
    Comput Biol Chem; 2015 Jun; 56():41-8. PubMed ID: 25854804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting clinically promising therapeutic hypotheses using tensor factorization.
    Yao J; Hurle MR; Nelson MR; Agarwal P
    BMC Bioinformatics; 2019 Feb; 20(1):69. PubMed ID: 30736745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico prediction of novel therapeutic targets using gene-disease association data.
    Ferrero E; Dunham I; Sanseau P
    J Transl Med; 2017 Aug; 15(1):182. PubMed ID: 28851378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncovering new disease indications for G-protein coupled receptors and their endogenous ligands.
    Freudenberg JM; Dunham I; Sanseau P; Rajpal DK
    BMC Bioinformatics; 2018 Oct; 19(1):345. PubMed ID: 30285606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A probabilistic knowledge graph for target identification.
    Liu C; Xiao K; Yu C; Lei Y; Lyu K; Tian T; Zhao D; Zhou F; Tang H; Zeng J
    PLoS Comput Biol; 2024 Apr; 20(4):e1011945. PubMed ID: 38578805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug repositioning of herbal compounds via a machine-learning approach.
    Kim E; Choi AS; Nam H
    BMC Bioinformatics; 2019 May; 20(Suppl 10):247. PubMed ID: 31138103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in the Machine Learning-Based Drug-Target Interaction Prediction.
    Zhang W; Lin W; Zhang D; Wang S; Shi J; Niu Y
    Curr Drug Metab; 2019; 20(3):194-202. PubMed ID: 30129407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Machine Learning Approach for Drug-target Interaction Prediction using Wrapper Feature Selection and Class Balancing.
    Redkar S; Mondal S; Joseph A; Hareesha KS
    Mol Inform; 2020 May; 39(5):e1900062. PubMed ID: 32003548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational probing protein-protein interactions targeting small molecules.
    Wang YC; Chen SL; Deng NY; Wang Y
    Bioinformatics; 2016 Jan; 32(2):226-34. PubMed ID: 26415726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Prediction of Drug-Target Interactions via Ensemble Learning.
    Ezzat A; Wu M; Li X; Kwoh CK
    Methods Mol Biol; 2019; 1903():239-254. PubMed ID: 30547446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A machine learning framework for predicting drug-drug interactions.
    Mei S; Zhang K
    Sci Rep; 2021 Sep; 11(1):17619. PubMed ID: 34475500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revealing new therapeutic opportunities through drug target prediction: a class imbalance-tolerant machine learning approach.
    Liang S; Yu H
    Bioinformatics; 2020 Aug; 36(16):4490-4497. PubMed ID: 32399556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SCNrank: spectral clustering for network-based ranking to reveal potential drug targets and its application in pancreatic ductal adenocarcinoma.
    Liu E; Zhang ZZ; Cheng X; Liu X; Cheng L
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):50. PubMed ID: 32241274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning approach to gene essentiality prediction: a review.
    Aromolaran O; Aromolaran D; Isewon I; Oyelade J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33842944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.