These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35710340)

  • 1. A hierarchical spike-and-slab model for pan-cancer survival using pan-omic data.
    Samorodnitsky S; Hoadley KA; Lock EF
    BMC Bioinformatics; 2022 Jun; 23(1):235. PubMed ID: 35710340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BIDIMENSIONAL LINKED MATRIX FACTORIZATION FOR PAN-OMICS PAN-CANCER ANALYSIS.
    Lock EF; Park JY; Hoadley KA
    Ann Appl Stat; 2022 Mar; 16(1):193-215. PubMed ID: 35505906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joint genome-wide prediction in several populations accounting for randomness of genotypes: A hierarchical Bayes approach. II: Multivariate spike and slab priors for marker effects and derivation of approximate Bayes and fractional Bayes factors for the complete family of models.
    Martínez CA; Khare K; Banerjee A; Elzo MA
    J Theor Biol; 2017 Mar; 417():131-141. PubMed ID: 28088357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Spike-and-Slab Lasso Generalized Linear Models for Prediction and Associated Genes Detection.
    Tang Z; Shen Y; Zhang X; Yi N
    Genetics; 2017 Jan; 205(1):77-88. PubMed ID: 27799277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gsslasso Cox: a Bayesian hierarchical model for predicting survival and detecting associated genes by incorporating pathway information.
    Tang Z; Lei S; Zhang X; Yi Z; Guo B; Chen JY; Shen Y; Yi N
    BMC Bioinformatics; 2019 Feb; 20(1):94. PubMed ID: 30813883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian meta-analysis models for cross cancer genomic investigation of pleiotropic effects using group structure.
    Baghfalaki T; Sugier PE; Truong T; Pettitt AN; Mengersen K; Liquet B
    Stat Med; 2021 Mar; 40(6):1498-1518. PubMed ID: 33368447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variable selection and estimation in causal inference using Bayesian spike and slab priors.
    Koch B; Vock DM; Wolfson J; Vock LB
    Stat Methods Med Res; 2020 Sep; 29(9):2445-2469. PubMed ID: 31939336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data.
    Mo Q; Shen R; Guo C; Vannucci M; Chan KS; Hilsenbeck SG
    Biostatistics; 2018 Jan; 19(1):71-86. PubMed ID: 28541380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian data integration and variable selection for pan-cancer survival prediction using protein expression data.
    Maity AK; Bhattacharya A; Mallick BK; Baladandayuthapani V
    Biometrics; 2020 Mar; 76(1):316-325. PubMed ID: 31393003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Bayesian integrative approach for multi-platform genomic data: A kidney cancer case study.
    Chekouo T; Stingo FC; Doecke JD; Do KA
    Biometrics; 2017 Jun; 73(2):615-624. PubMed ID: 27669160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using feature selection and Bayesian network identify cancer subtypes based on proteomic data.
    Wang Y; Gao X; Ru X; Sun P; Wang J
    J Proteomics; 2023 May; 280():104895. PubMed ID: 37024076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrative factorization of bidimensionally linked matrices.
    Park JY; Lock EF
    Biometrics; 2020 Mar; 76(1):61-74. PubMed ID: 31444786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Pan-Cancer and Polygenic Bayesian Hierarchical Model for the Effect of Somatic Mutations on Survival.
    Samorodnitsky S; Hoadley KA; Lock EF
    Cancer Inform; 2020; 19():1176935120907399. PubMed ID: 32116467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian Dynamic Borrowing of Historical Information with Applications to the Analysis of Large-Scale Assessments.
    Kaplan D; Chen J; Yavuz S; Lyu W
    Psychometrika; 2023 Mar; 88(1):1-30. PubMed ID: 35687222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spike-and-slab least absolute shrinkage and selection operator generalized additive models and scalable algorithms for high-dimensional data analysis.
    Guo B; Jaeger BC; Rahman AKMF; Long DL; Yi N
    Stat Med; 2022 Sep; 41(20):3899-3914. PubMed ID: 35665524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporating spatial structure into inclusion probabilities for Bayesian variable selection in generalized linear models with the spike-and-slab elastic net.
    Leach JM; Aban I; Yi N;
    J Stat Plan Inference; 2022 Mar; 217():141-152. PubMed ID: 36911105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From mixed effects modeling to spike and slab variable selection: A Bayesian regression model for group testing data.
    Joyner CN; McMahan CS; Tebbs JM; Bilder CR
    Biometrics; 2020 Sep; 76(3):913-923. PubMed ID: 31729015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A non-negative spike-and-slab lasso generalized linear stacking prediction modeling method for high-dimensional omics data.
    Shen J; Wang S; Dong Y; Sun H; Wang X; Tang Z
    BMC Bioinformatics; 2024 Mar; 25(1):119. PubMed ID: 38509499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bayesian basket trial design using a calibrated Bayesian hierarchical model.
    Chu Y; Yuan Y
    Clin Trials; 2018 Apr; 15(2):149-158. PubMed ID: 29499621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The spike-and-slab lasso and scalable algorithm to accommodate multinomial outcomes in variable selection problems.
    Leach JM; Yi N; Aban I; The Alzheimer's Disease Neuroimaging Initiative
    J Appl Stat; 2024; 51(11):2039-2061. PubMed ID: 39157266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.