These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 3571035)

  • 1. The physiology of Clostridium sporogenes NCIB 8053 growing in defined media.
    Lovitt RW; Kell DB; Morris JG
    J Appl Bacteriol; 1987 Jan; 62(1):81-92. PubMed ID: 3571035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The growth and nutrition of Clostridium sporogenes NCIB 8053 in defined media.
    Lovitt RW; Morris JG; Kell DB
    J Appl Bacteriol; 1987 Jan; 62(1):71-80. PubMed ID: 3571034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon flux distribution and kinetics of cellulose fermentation in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium.
    Desvaux M; Guedon E; Petitdemange H
    J Bacteriol; 2001 Jan; 183(1):119-30. PubMed ID: 11114908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Synthetic medium for culturing Clostridium sporogenes].
    Belokopytov BF; Golovchenko NP; Krauzova VI; Chuvil'skaia NA; Akimenko VK
    Mikrobiologiia; 1982; 51(2):354-60. PubMed ID: 7087816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interconversion of valine and leucine by Clostridium sporogenes.
    Monticello DJ; Costilow RN
    J Bacteriol; 1982 Nov; 152(2):946-9. PubMed ID: 7130135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic and energetic aspects of the growth of Clostridium butyricum on glucose in chemostat culture.
    Crabbendam PM; Neijssel OM; Tempest DW
    Arch Microbiol; 1985 Sep; 142(4):375-82. PubMed ID: 4062485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of glucose concentration in the growth medium upon neutral and acidic fermentation end-products of Clostridium bifermentans, Clostridium sporogenes and peptostreptococcus anaerobius.
    Turton LJ; Drucker DB; Ganguli LA
    J Med Microbiol; 1983 Feb; 16(1):61-7. PubMed ID: 6822993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol.
    Vasconcelos I; Girbal L; Soucaille P
    J Bacteriol; 1994 Mar; 176(5):1443-50. PubMed ID: 8113186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissimilatory nitrate reduction in Clostridium tertium.
    Hasan M; Hall JB
    Z Allg Mikrobiol; 1977; 17(7):501-6. PubMed ID: 203129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of protease production in Clostridium sporogenes.
    Allison C; Macfarlane GT
    Appl Environ Microbiol; 1990 Nov; 56(11):3485-90. PubMed ID: 2268158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic changes in Clostridium absonum ATCC 27555 accompanying induction of epimerization of a primary bile acid.
    Warchol M; Car L; Grill JP; Schneider F
    Curr Microbiol; 2003 Nov; 47(5):425-30. PubMed ID: 14669922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. the involvement of Nitric Oxide in the inhibition of the phosphoroclastic system in Clostridium sporogenes by sodium nitrite.
    Woods LF; Wood JM; Gibbs PA
    J Gen Microbiol; 1981 Aug; 125(2):399-406. PubMed ID: 6798167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volatile acid production by Clostridium sporogenes under controlled culture conditions.
    Anema PJ; Kooiman WJ; Geers JM
    J Appl Bacteriol; 1973 Dec; 36(4):683-7. PubMed ID: 4787614
    [No Abstract]   [Full Text] [Related]  

  • 14. Impact of formate on the growth and productivity of Clostridium ljungdahlii PETC and Clostridium carboxidivorans P7 grown on syngas.
    Ramió-Pujol S; Ganigué R; Bañeras L; Colprim J
    Int Microbiol; 2014 Dec; 17(4):195-204. PubMed ID: 26421736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a selective medium for the isolation of Clostridium sporogenes and related organisms.
    Fryer TF; Mead GC
    J Appl Bacteriol; 1979 Dec; 47(3):425-31. PubMed ID: 120359
    [No Abstract]   [Full Text] [Related]  

  • 16. Biokinetics of protein degrading
    Koo T; Jannat MAH; Hwang S
    J Microbiol Biotechnol; 2020 Apr; 30(4):533-539. PubMed ID: 31986562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ability of acidic pH, growth inhibitors, and glucose to increase the proton motive force and energy spilling of amino acid-fermenting Clostridium sporogenes MD1 cultures.
    Flythe MD; Russell JB
    Arch Microbiol; 2005 May; 183(4):236-42. PubMed ID: 15891933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition by glycine of the catabolic reduction of proline in Clostridium sticklandii: evidence on the regulation of amino acid reduction.
    Schwartz AC; Quecke W; Brenschede G
    Z Allg Mikrobiol; 1979; 19(3):211-20. PubMed ID: 516795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium.
    Desvaux M; Guedon E; Petitdemange H
    Appl Environ Microbiol; 2000 Jun; 66(6):2461-70. PubMed ID: 10831425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool.
    Girbal L; Soucaille P
    J Bacteriol; 1994 Nov; 176(21):6433-8. PubMed ID: 7961393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.