BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 35710545)

  • 1. Catalytical nano-immunocomplexes for remote-controlled sono-metabolic checkpoint trimodal cancer therapy.
    Zhang C; Huang J; Zeng Z; He S; Cheng P; Li J; Pu K
    Nat Commun; 2022 Jun; 13(1):3468. PubMed ID: 35710545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sono-Driven STING Activation using Semiconducting Polymeric Nanoagonists for Precision Sono-Immunotherapy of Head and Neck Squamous Cell Carcinoma.
    Jiang J; Zhang M; Lyu T; Chen L; Wu M; Li R; Li H; Wang X; Jiang X; Zhen X
    Adv Mater; 2023 Jul; 35(30):e2300854. PubMed ID: 37119091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-Cascade Activatable Nanopotentiators Reshaping Adenosine Metabolism for Sono-Chemodynamic-Immunotherapy of Deep Tumors.
    Zhan M; Wang F; Liu Y; Zhou J; Zhao W; Lu L; Li J; He X
    Adv Sci (Weinh); 2023 Apr; 10(10):e2207200. PubMed ID: 36727824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymeric STING Pro-agonists for Tumor-Specific Sonodynamic Immunotherapy.
    Yu J; He S; Zhang C; Xu C; Huang J; Xu M; Pu K
    Angew Chem Int Ed Engl; 2023 Aug; 62(32):e202307272. PubMed ID: 37312610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sonodynamic Cytokine Nanocomplexes with Specific Stimulation towards Effector T Cell for Combination Cancer Immunotherapy.
    Xu M; Yu J; Zhang C; Xu C; Wei X; Pu K
    Angew Chem Int Ed Engl; 2023 Oct; 62(40):e202308362. PubMed ID: 37587095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activatable Cancer Sono-Immunotherapy using Semiconducting Polymer Nanobodies.
    Zeng Z; Zhang C; He S; Li J; Pu K
    Adv Mater; 2022 Jul; 34(28):e2203246. PubMed ID: 35524454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precision cancer sono-immunotherapy using deep-tissue activatable semiconducting polymer immunomodulatory nanoparticles.
    Li J; Luo Y; Zeng Z; Cui D; Huang J; Xu C; Li L; Pu K; Zhang R
    Nat Commun; 2022 Jul; 13(1):4032. PubMed ID: 35821238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sono-Activatable Semiconducting Polymer Nanoreshapers Multiply Remodel Tumor Microenvironment for Potent Immunotherapy of Orthotopic Pancreatic Cancer.
    Li M; Liu Y; Zhang Y; Yu N; Li J
    Adv Sci (Weinh); 2023 Dec; 10(35):e2305150. PubMed ID: 37870196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activatable Semiconducting Polymer Pro-nanomodulators for Deep-Tissue Sono-immunotherapy of Orthotopic Pancreatic Cancer.
    Li J; Yu N; Cui D; Huang J; Luo Y; Pu K
    Angew Chem Int Ed Engl; 2023 Jul; 62(30):e202305200. PubMed ID: 37194682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adenosine A
    Yu F; Zhu C; Xie Q; Wang Y
    J Med Chem; 2020 Nov; 63(21):12196-12212. PubMed ID: 32667814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intratumoral immunotherapy using a TLR2/3 agonist, L-pampo, induces robust antitumor immune responses and enhances immune checkpoint blockade.
    Lee WS; Kim DS; Kim JH; Heo Y; Yang H; Go EJ; Kim JH; Lee SJ; Ahn BC; Yum JS; Chon HJ; Kim C
    J Immunother Cancer; 2022 Jun; 10(6):. PubMed ID: 35764365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Obstacles for T-lymphocytes in the tumour microenvironment: Therapeutic challenges, advances and opportunities beyond immune checkpoint.
    Verma NK; Wong BHS; Poh ZS; Udayakumar A; Verma R; Goh RKJ; Duggan SP; Shelat VG; Chandy KG; Grigoropoulos NF
    EBioMedicine; 2022 Sep; 83():104216. PubMed ID: 35986950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Semiconducting Iron-Chelating Nano-immunomodulator for Specific and Sensitized Sono-metallo-immunotherapy of Cancer.
    He S; Yu J; Xu M; Zhang C; Xu C; Cheng P; Pu K
    Angew Chem Int Ed Engl; 2023 Oct; 62(43):e202310178. PubMed ID: 37671691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular pH modulating injectable gel for enhancing immune checkpoint inhibitor therapy.
    Jin HS; Choi DS; Ko M; Kim D; Lee DH; Lee S; Lee AY; Kang SG; Kim SH; Jung Y; Jeong Y; Chung JJ; Park Y
    J Control Release; 2019 Dec; 315():65-75. PubMed ID: 31669264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in tumor microenvironment-targeted nanomedicine delivery approaches to overcome limitations of immune checkpoint blockade-based immunotherapy.
    Kim J; Hong J; Lee J; Fakhraei Lahiji S; Kim YH
    J Control Release; 2021 Apr; 332():109-126. PubMed ID: 33571549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor Microenvironment Remodeling by Intratumoral Oncolytic Vaccinia Virus Enhances the Efficacy of Immune-Checkpoint Blockade.
    Chon HJ; Lee WS; Yang H; Kong SJ; Lee NK; Moon ES; Choi J; Han EC; Kim JH; Ahn JB; Kim JH; Kim C
    Clin Cancer Res; 2019 Mar; 25(5):1612-1623. PubMed ID: 30538109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A2aR antagonists: Next generation checkpoint blockade for cancer immunotherapy.
    Leone RD; Lo YC; Powell JD
    Comput Struct Biotechnol J; 2015; 13():265-72. PubMed ID: 25941561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hydrogen peroxide economizer for on-demand oxygen production-assisted robust sonodynamic immunotherapy.
    Jiang Q; Qiao B; Lin X; Cao J; Zhang N; Guo H; Liu W; Zhu L; Xie X; Wan L; Tang R; Liang B; Wang D; Wang Z; Zhou Y; Ran H; Li P
    Theranostics; 2022; 12(1):59-75. PubMed ID: 34987634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intratumoral STING Activation with T-cell Checkpoint Modulation Generates Systemic Antitumor Immunity.
    Ager CR; Reilley MJ; Nicholas C; Bartkowiak T; Jaiswal AR; Curran MA
    Cancer Immunol Res; 2017 Aug; 5(8):676-684. PubMed ID: 28674082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting Hypoxia-A2A Adenosinergic Immunosuppression of Antitumor T Cells During Cancer Immunotherapy.
    Steingold JM; Hatfield SM
    Front Immunol; 2020; 11():570041. PubMed ID: 33117358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.