These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35710617)

  • 61. CyAbrB2 Contributes to the Transcriptional Regulation of Low CO2 Acclimation in Synechocystis sp. PCC 6803.
    Orf I; Schwarz D; Kaplan A; Kopka J; Hess WR; Hagemann M; Klähn S
    Plant Cell Physiol; 2016 Oct; 57(10):2232-2243. PubMed ID: 27638927
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Amine-Mediated Enzymatic Carboxylation of Phenols Using CO
    Pesci L; Gurikov P; Liese A; Kara S
    Biotechnol J; 2017 Dec; 12(12):. PubMed ID: 28862371
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Common freshwater cyanobacteria grow in 100% CO2.
    Thomas DJ; Sullivan SL; Price AL; Zimmerman SM
    Astrobiology; 2005 Feb; 5(1):66-74. PubMed ID: 15711170
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Diversity in photosynthetic electron transport under [CO
    Shimakawa G; Akimoto S; Ueno Y; Wada A; Shaku K; Takahashi Y; Miyake C
    Photosynth Res; 2016 Dec; 130(1-3):293-305. PubMed ID: 27026083
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effects of PII deficiency on expression of the genes involved in ammonium utilization in the cyanobacterium Synechocystis sp. Strain PCC 6803.
    Takatani N; Omata T
    Plant Cell Physiol; 2006 Jun; 47(6):679-88. PubMed ID: 16549396
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Functional analysis of the phosphoprotein PII (glnB gene product) in the cyanobacterium Synechococcus sp. strain PCC 7942.
    Forchhammer K; Tandeau de Marsac N
    J Bacteriol; 1995 Apr; 177(8):2033-40. PubMed ID: 7721695
    [TBL] [Abstract][Full Text] [Related]  

  • 67. CO2 Biofixation by the Cyanobacterium Spirulina sp. LEB 18 and the Green Alga Chlorella fusca LEB 111 Grown Using Gas Effluents and Solid Residues of Thermoelectric Origin.
    da Silva Vaz B; Costa JA; de Morais MG
    Appl Biochem Biotechnol; 2016 Jan; 178(2):418-29. PubMed ID: 26453033
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Reduction of photoautotrophic productivity in the cyanobacterium Synechocystis sp. strain PCC 6803 by phycobilisome antenna truncation.
    Page LE; Liberton M; Pakrasi HB
    Appl Environ Microbiol; 2012 Sep; 78(17):6349-51. PubMed ID: 22706065
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Increased carbohydrate production from carbon dioxide in randomly mutated cells of cyanobacterial strain Synechocystis sp. PCC 6714: Bioprocess understanding and evaluation of productivities.
    Kamravamanesh D; Slouka C; Limbeck A; Lackner M; Herwig C
    Bioresour Technol; 2019 Feb; 273():277-287. PubMed ID: 30448679
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Systematic identification of light-regulated cold-responsive proteome in a model cyanobacterium.
    Chen W; Fang L; Huang X; Ge H; Wang J; Wang X; Zhang Y; Sui N; Xu W; Wang Y
    J Proteomics; 2018 May; 179():100-109. PubMed ID: 29545168
    [TBL] [Abstract][Full Text] [Related]  

  • 71. CO
    Lu Y; Su C; Ray S; Yuan Y; Liu H
    mBio; 2019 Jan; 10(1):. PubMed ID: 30647154
    [No Abstract]   [Full Text] [Related]  

  • 72. PII-regulated arginine synthesis controls accumulation of cyanophycin in Synechocystis sp. strain PCC 6803.
    Maheswaran M; Ziegler K; Lockau W; Hagemann M; Forchhammer K
    J Bacteriol; 2006 Apr; 188(7):2730-4. PubMed ID: 16547064
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Heterologous Lactate Synthesis in
    Grund M; Jakob T; Toepel J; Schmid A; Wilhelm C; Bühler B
    Appl Environ Microbiol; 2022 Apr; 88(8):e0006322. PubMed ID: 35369703
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Improving Succinate Productivity by Engineering a Cyanobacterial CO
    Xiao M; Zhu X; Bi C; Ma Y; Zhang X
    Biotechnol J; 2017 Sep; 12(9):. PubMed ID: 28731528
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The plant-like C2 glycolate cycle and the bacterial-like glycerate pathway cooperate in phosphoglycolate metabolism in cyanobacteria.
    Eisenhut M; Kahlon S; Hasse D; Ewald R; Lieman-Hurwitz J; Ogawa T; Ruth W; Bauwe H; Kaplan A; Hagemann M
    Plant Physiol; 2006 Sep; 142(1):333-42. PubMed ID: 16877700
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Involvement of an ATP-dependent carboxylase in a CO2-dependent pathway of acetone metabolism by Xanthobacter strain Py2.
    Sluis MK; Small FJ; Allen JR; Ensign SA
    J Bacteriol; 1996 Jul; 178(14):4020-6. PubMed ID: 8763926
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Time-Resolved Acetaldehyde-Based Accessibility Profiling Maps Ligand-Target Interactions.
    Tian Y; Bao Q; Wang N; Wan N; Lv L; Hao H; He C; Ye H
    J Am Soc Mass Spectrom; 2021 Feb; 32(2):519-530. PubMed ID: 33382614
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effect of metal binding and posttranslational lysine carboxylation on the activity of recombinant hydantoinase.
    Huang CY; Hsu CC; Chen MC; Yang YS
    J Biol Inorg Chem; 2009 Jan; 14(1):111-21. PubMed ID: 18781344
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Advances in synthetic biology of CO
    Hu G; Song W; Gao C; Guo L; Chen X; Liu L
    Sheng Wu Gong Cheng Xue Bao; 2022 Apr; 38(4):1339-1350. PubMed ID: 35470610
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A cyanobacterial AbrB-like protein affects the apparent photosynthetic affinity for CO2 by modulating low-CO2-induced gene expression.
    Lieman-Hurwitz J; Haimovich M; Shalev-Malul G; Ishii A; Hihara Y; Gaathon A; Lebendiker M; Kaplan A
    Environ Microbiol; 2009 Apr; 11(4):927-36. PubMed ID: 19077009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.