These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Criteria for mucus transport in the airways by two-phase gas-liquid flow mechanism. Kim CS; Rodriguez CR; Eldridge MA; Sackner MA J Appl Physiol (1985); 1986 Mar; 60(3):901-7. PubMed ID: 3957840 [TBL] [Abstract][Full Text] [Related]
3. Mucus transport in the airways by two-phase gas-liquid flow mechanism: continuous flow model. Kim CS; Greene MA; Sankaran S; Sackner MA J Appl Physiol (1985); 1986 Mar; 60(3):908-17. PubMed ID: 3957841 [TBL] [Abstract][Full Text] [Related]
5. Response of a viscoelastic layer (mucus) to turbulent airflow in a rigid tube. Evrensel CA; Khan RU; Krumpe PE Technol Health Care; 2008; 16(5):355-66. PubMed ID: 19126974 [TBL] [Abstract][Full Text] [Related]
6. Aerosol deposition in the airway model with excessive mucus secretions. Kim CS; Eldridge MA J Appl Physiol (1985); 1985 Dec; 59(6):1766-72. PubMed ID: 4077785 [TBL] [Abstract][Full Text] [Related]
7. Viscous airflow through a rigid tube with a compliant lining: a simple model for the air-mucus interaction in pulmonary airways. Evrensel CA; Khan RU; Elli S; Krumpe PE J Biomech Eng; 1993 Aug; 115(3):262-70. PubMed ID: 8231141 [TBL] [Abstract][Full Text] [Related]
8. Mucus transport by high-frequency nonsymmetrical oscillatory airflow. Chang HK; Weber ME; King M J Appl Physiol (1985); 1988 Sep; 65(3):1203-9. PubMed ID: 3182490 [TBL] [Abstract][Full Text] [Related]
9. Interaction of laminar airflow with viscoelastic airway mucus. Evrensel CA; Khan MR Technol Health Care; 2003; 11(3):149-59. PubMed ID: 12775933 [TBL] [Abstract][Full Text] [Related]
10. Resistance of mucus-lined tubes to steady and oscillatory airflow. King M; Chang HK; Weber ME J Appl Physiol Respir Environ Exerc Physiol; 1982 May; 52(5):1172-6. PubMed ID: 7096141 [TBL] [Abstract][Full Text] [Related]
11. Removal of excessive bronchial secretions by asymmetric high-frequency oscillations. Freitag L; Long WM; Kim CS; Wanner A J Appl Physiol (1985); 1989 Aug; 67(2):614-9. PubMed ID: 2793662 [TBL] [Abstract][Full Text] [Related]
12. Mobilization of mucus by airway oscillations. Freitag L; Kim CS; Long WM; Venegas J; Wanner A Acta Anaesthesiol Scand Suppl; 1989; 90():93-101. PubMed ID: 2929268 [TBL] [Abstract][Full Text] [Related]
13. The role of mucus gel viscosity, spinnability, and adhesive properties in clearance by simulated cough. King M; Zahm JM; Pierrot D; Vaquez-Girod S; Puchelle E Biorheology; 1989; 26(4):737-45. PubMed ID: 2611367 [TBL] [Abstract][Full Text] [Related]
15. Rôle of mucus viscoelasticity in clearance by cough. King M Eur J Respir Dis Suppl; 1987; 153():165-72. PubMed ID: 3480813 [TBL] [Abstract][Full Text] [Related]
16. Quasi-dynamic breathing model of the lung incorporating viscoelasticity of the lung tissue. Daphalapurkar N; Riglin J; Mohan A; Harris J; Bernardin J Int J Numer Method Biomed Eng; 2023 Aug; 39(8):e3744. PubMed ID: 37334440 [TBL] [Abstract][Full Text] [Related]
17. A planar model for mucociliary transport: effect of mucus viscoelasticity. King M; Agarwal M; Shukla JB Biorheology; 1993; 30(1):49-61. PubMed ID: 8374102 [TBL] [Abstract][Full Text] [Related]
18. Mucus transport and distribution by steady expiration in an idealized airway geometry. Rajendran RR; Banerjee A Med Eng Phys; 2019 Apr; 66():26-39. PubMed ID: 30850333 [TBL] [Abstract][Full Text] [Related]
19. Mucus transport by cough. Scherer PW Chest; 1981 Dec; 80(6 Suppl):830-3. PubMed ID: 7307619 [TBL] [Abstract][Full Text] [Related]
20. A viscoelastic traction layer model of muco-ciliary transport. Smith DJ; Gaffney EA; Blake JR Bull Math Biol; 2007 Jan; 69(1):289-327. PubMed ID: 16804652 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]