These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 35710951)
1. Combined artificial intelligence and radiologist model for predicting rectal cancer treatment response from magnetic resonance imaging: an external validation study. Horvat N; Veeraraghavan H; Nahas CSR; Bates DDB; Ferreira FR; Zheng J; Capanu M; Fuqua JL; Fernandes MC; Sosa RE; Jayaprakasam VS; Cerri GG; Nahas SC; Petkovska I Abdom Radiol (NY); 2022 Aug; 47(8):2770-2782. PubMed ID: 35710951 [TBL] [Abstract][Full Text] [Related]
2. External validation and comparison of MR-based radiomics models for predicting pathological complete response in locally advanced rectal cancer: a two-centre, multi-vendor study. Wei Q; Chen Z; Tang Y; Chen W; Zhong L; Mao L; Hu S; Wu Y; Deng K; Yang W; Liu X Eur Radiol; 2023 Mar; 33(3):1906-1917. PubMed ID: 36355199 [TBL] [Abstract][Full Text] [Related]
3. [A prediction model of pathological complete response in patients with locally advanced rectal cancer after PD-1 antibody combined with total neoadjuvant chemoradiotherapy based on MRI radiomics]. Zhang XY; Zhu HT; Li XT; Li YJ; Li ZW; Wang WH; Wu AW; Sun YS; Zhang L Zhonghua Wei Chang Wai Ke Za Zhi; 2022 Mar; 25(3):228-234. PubMed ID: 35340172 [No Abstract] [Full Text] [Related]
4. Radiomics performs comparable to morphologic assessment by expert radiologists for prediction of response to neoadjuvant chemoradiotherapy on baseline staging MRI in rectal cancer. van Griethuysen JJM; Lambregts DMJ; Trebeschi S; Lahaye MJ; Bakers FCH; Vliegen RFA; Beets GL; Aerts HJWL; Beets-Tan RGH Abdom Radiol (NY); 2020 Mar; 45(3):632-643. PubMed ID: 31734709 [TBL] [Abstract][Full Text] [Related]
5. MRI-Based Radiomic Models Outperform Radiologists in Predicting Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Wen L; Liu J; Hu P; Bi F; Liu S; Jian L; Zhu S; Nie S; Cao F; Lu Q; Yu X; Liu K Acad Radiol; 2023 Sep; 30 Suppl 1():S176-S184. PubMed ID: 36739228 [TBL] [Abstract][Full Text] [Related]
6. Diagnostic performance of magnetic resonance to assess treatment response after neoadjuvant therapy in patients with locally advanced rectal cancer. Nahas SC; Nahas CSR; Cama GM; de Azambuja RL; Horvat N; Marques CFS; Menezes MR; Junior UR; Cecconello I Abdom Radiol (NY); 2019 Nov; 44(11):3632-3640. PubMed ID: 30663025 [TBL] [Abstract][Full Text] [Related]
7. [Predictive value of combination of MRI tumor regression grade and apparent diffusion coefficient for pathological complete remission after neoadjuvant treatment of locally advanced rectal cancer]. Xu N; Huang FC; Li WL; Luan X; Jiang YM; He B Zhonghua Wei Chang Wai Ke Za Zhi; 2021 Apr; 24(4):359-365. PubMed ID: 33878826 [No Abstract] [Full Text] [Related]
8. MRI-based radiomic score increased mrTRG accuracy in predicting rectal cancer response to neoadjuvant therapy. Miranda J; Horvat N; Assuncao AN; de M Machado FA; Chakraborty J; Pandini RV; Saraiva S; Nahas CSR; Nahas SC; Nomura CH Abdom Radiol (NY); 2023 Jun; 48(6):1911-1920. PubMed ID: 37004557 [TBL] [Abstract][Full Text] [Related]
9. MRI Radiomics Model Predicts Pathologic Complete Response of Rectal Cancer Following Chemoradiotherapy. Shin J; Seo N; Baek SE; Son NH; Lim JS; Kim NK; Koom WS; Kim S Radiology; 2022 May; 303(2):351-358. PubMed ID: 35133200 [TBL] [Abstract][Full Text] [Related]
10. Prediction of locally advanced rectal cancer response to neoadjuvant chemoradiation therapy using volumetric multiparametric MRI-based radiomics. El Homsi M; Bane O; Fauveau V; Hectors S; Vietti Violi N; Sylla P; Ko HB; Cuevas J; Carbonell G; Nehlsen A; Vanguri R; Viswanath S; Jambawalikar S; Shaish H; Taouli B Abdom Radiol (NY); 2024 Mar; 49(3):791-800. PubMed ID: 38150143 [TBL] [Abstract][Full Text] [Related]
11. MR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant Therapy. Horvat N; Veeraraghavan H; Khan M; Blazic I; Zheng J; Capanu M; Sala E; Garcia-Aguilar J; Gollub MJ; Petkovska I Radiology; 2018 Jun; 287(3):833-843. PubMed ID: 29514017 [TBL] [Abstract][Full Text] [Related]
12. Predicting the response to neoadjuvant chemoradiation for rectal cancer using nomograms based on MRI tumour regression grade. Qin S; Chen Y; Liu K; Li Y; Zhou Y; Zhao W; Xin P; Wang Q; Lu S; Wang H; Lang N Cancer Radiother; 2024 Aug; 28(4):341-353. PubMed ID: 38981746 [TBL] [Abstract][Full Text] [Related]
13. Develop and validate a radiomics space-time model to predict the pathological complete response in patients undergoing neoadjuvant treatment of rectal cancer: an artificial intelligence model study based on machine learning. Peng J; Wang W; Jin H; Qin X; Hou J; Yang Z; Shu Z BMC Cancer; 2023 Apr; 23(1):365. PubMed ID: 37085830 [TBL] [Abstract][Full Text] [Related]
14. MR-based artificial intelligence model to assess response to therapy in locally advanced rectal cancer. Ferrari R; Mancini-Terracciano C; Voena C; Rengo M; Zerunian M; Ciardiello A; Grasso S; Mare' V; Paramatti R; Russomando A; Santacesaria R; Satta A; Solfaroli Camillocci E; Faccini R; Laghi A Eur J Radiol; 2019 Sep; 118():1-9. PubMed ID: 31439226 [TBL] [Abstract][Full Text] [Related]
15. Clinical utility of radiomics at baseline rectal MRI to predict complete response of rectal cancer after chemoradiation therapy. Petkovska I; Tixier F; Ortiz EJ; Golia Pernicka JS; Paroder V; Bates DD; Horvat N; Fuqua J; Schilsky J; Gollub MJ; Garcia-Aguilar J; Veeraraghavan H Abdom Radiol (NY); 2020 Nov; 45(11):3608-3617. PubMed ID: 32296896 [TBL] [Abstract][Full Text] [Related]
16. Predicting Rectal Cancer Response to Neoadjuvant Chemoradiotherapy Using Deep Learning of Diffusion Kurtosis MRI. Zhang XY; Wang L; Zhu HT; Li ZW; Ye M; Li XT; Shi YJ; Zhu HC; Sun YS Radiology; 2020 Jul; 296(1):56-64. PubMed ID: 32315264 [TBL] [Abstract][Full Text] [Related]
17. Developing a prediction model based on MRI for pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Wan L; Zhang C; Zhao Q; Meng Y; Zou S; Yang Y; Liu Y; Jiang J; Ye F; Ouyang H; Zhao X; Zhang H Abdom Radiol (NY); 2019 Sep; 44(9):2978-2987. PubMed ID: 31327039 [TBL] [Abstract][Full Text] [Related]
18. MRI radiomics features of mesorectal fat can predict response to neoadjuvant chemoradiation therapy and tumor recurrence in patients with locally advanced rectal cancer. Jayaprakasam VS; Paroder V; Gibbs P; Bajwa R; Gangai N; Sosa RE; Petkovska I; Golia Pernicka JS; Fuqua JL; Bates DDB; Weiser MR; Cercek A; Gollub MJ Eur Radiol; 2022 Feb; 32(2):971-980. PubMed ID: 34327580 [TBL] [Abstract][Full Text] [Related]
19. Prognostic prediction value of the clinical-radiomics tumour-stroma ratio in locally advanced rectal cancer. Cai C; Hu T; Rong Z; Gong J; Tong T Eur J Radiol; 2024 Jan; 170():111254. PubMed ID: 38091662 [TBL] [Abstract][Full Text] [Related]
20. Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicentre observational study. Feng L; Liu Z; Li C; Li Z; Lou X; Shao L; Wang Y; Huang Y; Chen H; Pang X; Liu S; He F; Zheng J; Meng X; Xie P; Yang G; Ding Y; Wei M; Yun J; Hung MC; Zhou W; Wahl DR; Lan P; Tian J; Wan X Lancet Digit Health; 2022 Jan; 4(1):e8-e17. PubMed ID: 34952679 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]