BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35710964)

  • 21. Lead accumulation by tall fescue (Festuca arundinacea Schreb.) grown on a lead-contaminated soil.
    Begonia MT; Begonia GB; Ighoavodha M; Gilliard D
    Int J Environ Res Public Health; 2005 Aug; 2(2):228-33. PubMed ID: 16705822
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of Festuca arundinacea in phytoremediation of soils contaminated with Pb, Ni, Cd and petroleum hydrocarbons.
    Steliga T; Kluk D
    Ecotoxicol Environ Saf; 2020 May; 194():110409. PubMed ID: 32155481
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impacts of water deficit and post-drought irrigation on transpiration rate, root activity, and biomass yield of Festuca arundinacea during phytoextraction.
    Peng X; Li J; Sun L; Gao Y; Cao M; Luo J
    Chemosphere; 2022 May; 294():133842. PubMed ID: 35120948
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cadmium Accumulation and Tolerance in Seven Ornamental Willow Genotypes.
    Yang W; Wu F; Ding Z; Zhang X; Zhao F; Wang Y; Yang X
    Bull Environ Contam Toxicol; 2018 Nov; 101(5):644-650. PubMed ID: 30368573
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toxic effects of cadmium on tall fescue and different responses of the photosynthetic activities in the photosystem electron donor and acceptor sides.
    Huang M; Zhu H; Zhang J; Tang D; Han X; Chen L; Du D; Yao J; Chen K; Sun J
    Sci Rep; 2017 Oct; 7(1):14387. PubMed ID: 29085018
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced Phytoextraction for Co-contaminated Soil with Cd and Pb by Ryegrass (Lolium perenne L.).
    Zhang Y; Li F; Xu W; Ren J; Chen S; Shen K; Long Z
    Bull Environ Contam Toxicol; 2019 Jul; 103(1):147-154. PubMed ID: 31250070
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessing the potential for cadmium phytoremediation with Calamagrostis epigejos: a pot experiment.
    Lehmann C; Rebele F
    Int J Phytoremediation; 2004; 6(2):169-83. PubMed ID: 15328982
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of salicylic acid and mycorrhizal symbiosis on improvement of fluoranthene phytoremediation using tall fescue (Festuca arundinacea Schreb).
    Rostami M; Rostami S
    Chemosphere; 2019 Oct; 232():70-75. PubMed ID: 31152905
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Decapitation improves the efficiency of Cd phytoextraction by Celosia argentea Linn.
    Liu J; Zhang X; Mo L; Yao S; Wang Y
    Chemosphere; 2017 Aug; 181():382-389. PubMed ID: 28458213
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neotyphodium Endophyte Changes Phytoextraction of Zinc in Festuca arundinacea and Lolium perenne.
    Zamani N; Sabzalian MR; Khoshgoftarmanesh A; Afyuni M
    Int J Phytoremediation; 2015; 17(1-6):456-63. PubMed ID: 25495936
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phytoextraction of cadmium by four Mediterranean shrub species.
    Tapia Y; Cala V; Eymar E; Frutos I; Gárate A; Masaguer A
    Int J Phytoremediation; 2011 Jul; 13(6):567-79. PubMed ID: 21972503
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Bacillus and Lysinibacillus sp. bio-augmented Festuca arundinacea phytoremediation system for the rapid decontamination of chromium influenced soil.
    Peng H; Liang K; Luo H; Huang H; Luo S; Zhang A; Xu H; Xu F
    Chemosphere; 2021 Nov; 283():131186. PubMed ID: 34157621
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction between Cd and Zn on Metal Accumulation, Translocation and Mineral Nutrition in Tall Fescue (
    Dong Q; Hu S; Fei L; Liu L; Wang Z
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31284596
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils.
    Manousaki E; Kadukova J; Papadantonakis N; Kalogerakis N
    Environ Res; 2008 Mar; 106(3):326-32. PubMed ID: 17543928
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential effects of citric acid on cadmium uptake and accumulation between tall fescue and Kentucky bluegrass.
    Wang S; Dong Q; Wang Z
    Ecotoxicol Environ Saf; 2017 Nov; 145():200-206. PubMed ID: 28734223
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Effect of Pollination on Cd Phytoextraction From Soil by Maize (Zea mays L.).
    Xu W; Lu G; Wang R; Guo C; Liao C; Yi X; Dang Z
    Int J Phytoremediation; 2015; 17(10):945-50. PubMed ID: 25581531
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of endophytic fungi on cadmium tolerance and bioaccumulation by Festuca arundinacea and Festuca pratensis.
    Soleimani M; Hajabbasi MA; Afyuni M; Mirlohi A; Borggaard OK; Holm PE
    Int J Phytoremediation; 2010 Aug; 12(6):535-49. PubMed ID: 21166279
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phytoremediation of cadmium-contaminated soils by Rorippa globosa using two-phase planting.
    Wei SH; Zhou QX
    Environ Sci Pollut Res Int; 2006 May; 13(3):151-5. PubMed ID: 16758704
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of Proanthocyanidins from Seeds of Perennial Ryegrass (Lolium perenne L.) and Tall Fescue (Festuca arundinacea) by Liquid Chromatography-Mass Spectrometry.
    Fraser K; Collette V; Hancock KR
    J Agric Food Chem; 2016 Sep; 64(35):6676-84. PubMed ID: 27532250
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of soil contamination with polycyclic aromatic hydrocarbons from drilling waste on germination and growth of lawn grasses.
    Gawryluk A; Stępniowska A; Lipińska H
    Ecotoxicol Environ Saf; 2022 May; 236():113492. PubMed ID: 35395602
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.