These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 35711434)

  • 1. The Role of Myeloid Cells in GBM Immunosuppression.
    Lin YJ; Wu CY; Wu JY; Lim M
    Front Immunol; 2022; 13():887781. PubMed ID: 35711434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myeloid Cells in Glioblastoma Microenvironment.
    De Leo A; Ugolini A; Veglia F
    Cells; 2020 Dec; 10(1):. PubMed ID: 33374253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of myeloid cells in the immunosuppressive microenvironment in gliomas.
    Locarno CV; Simonelli M; Carenza C; Capucetti A; Stanzani E; Lorenzi E; Persico P; Della Bella S; Passoni L; Mavilio D; Bonecchi R; Locati M; Savino B
    Immunobiology; 2020 Jan; 225(1):151853. PubMed ID: 31703822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Insights into the Multifaceted Role of Myeloid-Derived Suppressor Cells (MDSCs) in High-Grade Gliomas: From Metabolic Reprograming, Immunosuppression, and Therapeutic Resistance to Current Strategies for Targeting MDSCs.
    Lakshmanachetty S; Cruz-Cruz J; Hoffmeyer E; Cole AP; Mitra SS
    Cells; 2021 Apr; 10(4):. PubMed ID: 33919732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glioma-associated microglia/macrophages (GAMs) in glioblastoma: Immune function in the tumor microenvironment and implications for immunotherapy.
    Lin C; Wang N; Xu C
    Front Immunol; 2023; 14():1123853. PubMed ID: 36969167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives.
    Lin H; Liu C; Hu A; Zhang D; Yang H; Mao Y
    J Hematol Oncol; 2024 May; 17(1):31. PubMed ID: 38720342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glioblastoma-instructed microglia transition to heterogeneous phenotypic states with phagocytic and dendritic cell-like features in patient tumors and patient-derived orthotopic xenografts.
    Yabo YA; Moreno-Sanchez PM; Pires-Afonso Y; Kaoma T; Nosirov B; Scafidi A; Ermini L; Lipsa A; Oudin A; Kyriakis D; Grzyb K; Poovathingal SK; Poli A; Muller A; Toth R; Klink B; Berchem G; Berthold C; Hertel F; Mittelbronn M; Heiland DH; Skupin A; Nazarov PV; Niclou SP; Michelucci A; Golebiewska A
    Genome Med; 2024 Apr; 16(1):51. PubMed ID: 38566128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blocking NHE1 stimulates glioma tumor immunity by restoring OXPHOS function of myeloid cells.
    Hasan MN; Luo L; Ding D; Song S; Bhuiyan MIH; Liu R; Foley LM; Guan X; Kohanbash G; Hitchens TK; Castro MG; Zhang Z; Sun D
    Theranostics; 2021; 11(3):1295-1309. PubMed ID: 33391535
    [No Abstract]   [Full Text] [Related]  

  • 9. Metabolic and functional reprogramming of myeloid-derived suppressor cells and their therapeutic control in glioblastoma.
    Won WJ; Deshane JS; Leavenworth JW; Oliva CR; Griguer CE
    Cell Stress; 2019 Jan; 3(2):47-65. PubMed ID: 31225500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immature myeloid cells in the tumor microenvironment: Implications for immunotherapy.
    Kamran N; Chandran M; Lowenstein PR; Castro MG
    Clin Immunol; 2018 Apr; 189():34-42. PubMed ID: 27777083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenotypic plasticity of myeloid cells in glioblastoma development, progression, and therapeutics.
    Ye Z; Ai X; Zhao L; Fei F; Wang P; Zhou S
    Oncogene; 2021 Oct; 40(42):6059-6070. PubMed ID: 34556813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism and therapeutic potential of tumor-immune symbiosis in glioblastoma.
    Pang L; Khan F; Heimberger AB; Chen P
    Trends Cancer; 2022 Oct; 8(10):839-854. PubMed ID: 35624002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immune microenvironment of gliomas.
    Gieryng A; Pszczolkowska D; Walentynowicz KA; Rajan WD; Kaminska B
    Lab Invest; 2017 May; 97(5):498-518. PubMed ID: 28287634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global stability and parameter analysis reinforce therapeutic targets of PD-L1-PD-1 and MDSCs for glioblastoma.
    Anderson HG; Takacs GP; Harris DC; Kuang Y; Harrison JK; Stepien TL
    J Math Biol; 2023 Dec; 88(1):10. PubMed ID: 38099947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immune suppression in gliomas.
    Grabowski MM; Sankey EW; Ryan KJ; Chongsathidkiet P; Lorrey SJ; Wilkinson DS; Fecci PE
    J Neurooncol; 2021 Jan; 151(1):3-12. PubMed ID: 32542437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systemic and local immunosuppression in glioblastoma and its prognostic significance.
    Stepanenko AA; Sosnovtseva AO; Valikhov MP; Chernysheva AA; Abramova OV; Pavlov KA; Chekhonin VP
    Front Immunol; 2024; 15():1326753. PubMed ID: 38481999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Eclectic Nature of Glioma-Infiltrating Macrophages and Microglia.
    Arrieta VA; Najem H; Petrosyan E; Lee-Chang C; Chen P; Sonabend AM; Heimberger AB
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas.
    Proc Natl Acad Sci U S A; ; . PubMed ID: 31879345
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 24.