These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 35711553)
1. Biocompatible Polyelectrolyte Complex Nanoparticles for Lycopene Encapsulation Attenuate Oxidative Stress-Induced Cell Damage. Zhang D; Jiang Y; Xiang M; Wu F; Sun M; Du X; Chen L Front Nutr; 2022; 9():902208. PubMed ID: 35711553 [TBL] [Abstract][Full Text] [Related]
2. Biocompatible Polyelectrolyte Complex Nanoparticles from Lactoferrin and Pectin as Potential Vehicles for Antioxidative Curcumin. Yan JK; Qiu WY; Wang YY; Wu JY J Agric Food Chem; 2017 Jul; 65(28):5720-5730. PubMed ID: 28657749 [TBL] [Abstract][Full Text] [Related]
3. Quaternized curdlan/pectin polyelectrolyte complexes as biocompatible nanovehicles for curcumin. Wu LX; Qiao ZR; Cai WD; Qiu WY; Yan JK Food Chem; 2019 Sep; 291():180-186. PubMed ID: 31006457 [TBL] [Abstract][Full Text] [Related]
4. A new combination strategy to enhance apoptosis in cancer cells by using nanoparticles as biocompatible drug delivery carriers. Kucuksayan E; Bozkurt F; Yilmaz MT; Sircan-Kucuksayan A; Hanikoglu A; Ozben T Sci Rep; 2021 Jun; 11(1):13027. PubMed ID: 34158544 [TBL] [Abstract][Full Text] [Related]
5. Polysaccharide-based nanoparticles fabricated from oppositely charged curdlan derivatives for curcumin encapsulation. Yan JK; Wang ZW; Zhu J; Liu Y; Chen X; Li L Int J Biol Macromol; 2022 Jul; 213():923-933. PubMed ID: 35654222 [TBL] [Abstract][Full Text] [Related]
6. Polyelectrolyte Complex Nanoparticles from Chitosan and Acylated Rapeseed Cruciferin Protein for Curcumin Delivery. Wang F; Yang Y; Ju X; Udenigwe CC; He R J Agric Food Chem; 2018 Mar; 66(11):2685-2693. PubMed ID: 29451796 [TBL] [Abstract][Full Text] [Related]
7. Formulation and Physicochemical Characterization of Lycopene-Loaded Solid Lipid Nanoparticles. Nazemiyeh E; Eskandani M; Sheikhloie H; Nazemiyeh H Adv Pharm Bull; 2016 Jun; 6(2):235-41. PubMed ID: 27478786 [TBL] [Abstract][Full Text] [Related]
8. Encapsulation of lycopene in Chlorella pyrenoidosa: Loading properties and stability improvement. Pu C; Tang W Food Chem; 2017 Nov; 235():283-289. PubMed ID: 28554637 [TBL] [Abstract][Full Text] [Related]
9. Influence of Soy Lecithin and Sodium Caseinate on The Stability and Yussof NS; Ping TC; Boon TT; Utra U; Ramli ME Food Technol Biotechnol; 2023 Mar; 61(1):39-50. PubMed ID: 37200792 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and Characterization of Zein Composite Particles Coated by Caseinate-Pectin Electrostatic Complexes with Improved Structural Stability in Acidic Aqueous Environments. Zhang Y; Wang B; Wu Y; Gao B; Yu LL Molecules; 2019 Jul; 24(14):. PubMed ID: 31373330 [TBL] [Abstract][Full Text] [Related]
11. Self-assembly of green tea catechin derivatives in nanoparticles for oral lycopene delivery. Li W; Yalcin M; Lin Q; Ardawi MM; Mousa SA J Control Release; 2017 Feb; 248():117-124. PubMed ID: 28077264 [TBL] [Abstract][Full Text] [Related]
12. Anthocyanins encapsulated by PLGA@PEG nanoparticles potentially improved its free radical scavenging capabilities via p38/JNK pathway against Aβ Amin FU; Shah SA; Badshah H; Khan M; Kim MO J Nanobiotechnology; 2017 Feb; 15(1):12. PubMed ID: 28173812 [TBL] [Abstract][Full Text] [Related]
13. Controllable fabrication of alginate/poly-L-ornithine polyelectrolyte complex hydrogel networks as therapeutic drug and cell carriers. Xue W; Liu B; Zhang H; Ryu S; Kuss M; Shukla D; Hu G; Shi W; Jiang X; Lei Y; Duan B Acta Biomater; 2022 Jan; 138():182-192. PubMed ID: 34774784 [TBL] [Abstract][Full Text] [Related]
14. Lycopene Alleviates Titanium Dioxide Nanoparticle-Induced Testicular Toxicity by Inhibiting Oxidative Stress and Apoptosis in Mice. Meng X; Li L; An H; Deng Y; Ling C; Lu T; Song G; Wang Y Biol Trace Elem Res; 2022 Jun; 200(6):2825-2837. PubMed ID: 34396458 [TBL] [Abstract][Full Text] [Related]
15. Intermolecular interactions between salmon calcitonin, hyaluronate, and chitosan and their impact on the process of formation and properties of peptide-loaded nanoparticles. Umerska A; Corrigan OI; Tajber L Int J Pharm; 2014 Dec; 477(1-2):102-12. PubMed ID: 25447822 [TBL] [Abstract][Full Text] [Related]
17. Development of Epirubicin-Loaded Biocompatible Polymer PLA-PEG-PLA Nanoparticles: Synthesis, Characterization, Stability, and In Vitro Anticancerous Assessment. Massadeh S; Almohammed I; Barhoush E; Omer M; Aldhawi N; Almalik A; Alaamery M Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33918625 [TBL] [Abstract][Full Text] [Related]
18. Investigating preparation and characterisation of diphtheria toxoid-loaded on sodium alginate nanoparticles. Aghamiri S; Noofeli M; Saffarian P; Salehi Najafabadi Z; Goudarzi HR IET Nanobiotechnol; 2022 Jul; 16(5):199-209. PubMed ID: 35610737 [TBL] [Abstract][Full Text] [Related]
19. Improved stability and aqueous solubility of β-carotene via encapsulation in self-assembled bioactive oleanolic acid nanoparticles. Liu S; Zhang J; Fu R; Feng H; Chu Y; Huang D; Liu H; Li C; Ma C; Abd El-Aty AM Food Chem; 2022 Mar; 373(Pt B):131498. PubMed ID: 34753075 [TBL] [Abstract][Full Text] [Related]
20. Adhesive Drug Delivery Systems Based on Polyelectrolyte Complex Nanoparticles (PEC NP) for Bone Healing. Muller M; Vehlow D; Torger B; Urban B; Woltmann B; Hempel U Curr Pharm Des; 2018; 24(13):1341-1348. PubMed ID: 29237375 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]