These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35711632)

  • 1. A Hybrid Particle-Flow CFD Modeling Approach in Truncated Hepatic Arterial Trees for Liver Radioembolization: A Patient-specific Case Study.
    Bomberna T; Vermijs S; Lejoly M; Verslype C; Bonne L; Maleux G; Debbaut C
    Front Bioeng Biotechnol; 2022; 10():914979. PubMed ID: 35711632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the importance of spiral-flow inflow boundary conditions when using idealized artery geometries in the analysis of liver radioembolization: A parametric study.
    Ortega J; Antón R; Ramos JC; Rivas A; Larraona GS; Sangro B; Bilbao JI; Aramburu J
    Int J Numer Method Biomed Eng; 2020 Jun; 36(6):e3337. PubMed ID: 32212316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Modeling of the Liver Arterial Blood Flow for Microsphere Therapy: Effect of Boundary Conditions.
    Taebi A; Pillai RM; Roudsari BS; Vu CT; Roncali E
    Bioengineering (Basel); 2020 Jun; 7(3):. PubMed ID: 32610459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transarterial drug delivery for liver cancer: numerical simulations and experimental validation of particle distribution in patient-specific livers.
    Bomberna T; Koudehi GA; Claerebout C; Verslype C; Maleux G; Debbaut C
    Expert Opin Drug Deliv; 2021 Mar; 18(3):409-422. PubMed ID: 33210955
    [No Abstract]   [Full Text] [Related]  

  • 5. Computational study of a novel catheter for liver radioembolization.
    Ortega J; Antón R; Ramos JC; Rivas A; S Larraona G; Sangro B; Bilbao JI; Aramburu J
    Int J Numer Method Biomed Eng; 2022 Apr; 38(4):e3577. PubMed ID: 35094497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale Computational Fluid Dynamics Modeling for Personalized Liver Cancer Radioembolization Dosimetry.
    Taebi A; Vu CT; Roncali E
    J Biomech Eng; 2021 Jan; 143(1):. PubMed ID: 32601676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of angled-tip microcatheter and microsphere injection velocity in liver radioembolization: A computational particle-hemodynamics study.
    Aramburu J; Antón R; Rivas A; Ramos JC; Sangro B; Bilbao JI
    Int J Numer Method Biomed Eng; 2017 Dec; 33(12):. PubMed ID: 28474382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational assessment of the effects of the catheter type on particle-hemodynamics during liver radioembolization.
    Aramburu J; Antón R; Rivas A; Ramos JC; Sangro B; Bilbao JI
    J Biomech; 2016 Nov; 49(15):3705-3713. PubMed ID: 27751570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer modeling of controlled microsphere release and targeting in a representative hepatic artery system.
    Basciano CA; Kleinstreuer C; Kennedy AS; Dezarn WA; Childress E
    Ann Biomed Eng; 2010 May; 38(5):1862-79. PubMed ID: 20162358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liver Radioembolization: An Analysis of Parameters that Influence the Catheter-Based Particle-Delivery via CFD.
    Aramburu J; Antón R; Rivas A; Ramos JC; Sangro B; Bilbao JI
    Curr Med Chem; 2020; 27(10):1600-1615. PubMed ID: 29932032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Personalized Dosimetry for Liver Cancer Y-90 Radioembolization Using Computational Fluid Dynamics and Monte Carlo Simulation.
    Roncali E; Taebi A; Foster C; Vu CT
    Ann Biomed Eng; 2020 May; 48(5):1499-1510. PubMed ID: 32006268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of a hybrid lung model by combining a real geometry of the upper airways and an idealized geometry of the lower airways.
    Agujetas R; Barrio-Perotti R; Ferrera C; Pandal-Blanco A; Walters DK; Fernández-Tena A
    Comput Methods Programs Biomed; 2020 Nov; 196():105613. PubMed ID: 32593974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational fluid dynamics study of intra-arterial chemotherapy for oral cancer.
    Kitajima H; Oshima M; Iwai T; Ohhara Y; Yajima Y; Mitsudo K; Tohnai I
    Biomed Eng Online; 2017 May; 16(1):57. PubMed ID: 28506222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical investigation of liver radioembolization via computational particle-hemodynamics: The role of the microcatheter distal direction and microsphere injection point and velocity.
    Aramburu J; Antón R; Rivas A; Ramos JC; Sangro B; Bilbao JI
    J Biomech; 2016 Nov; 49(15):3714-3721. PubMed ID: 27751569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Innovation in catheter design for intra-arterial liver cancer treatments results in favorable particle-fluid dynamics.
    van den Hoven AF; Lam MG; Jernigan S; van den Bosch MA; Buckner GD
    J Exp Clin Cancer Res; 2015 Aug; 34(1):74. PubMed ID: 26231929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological outflow boundary conditions methodology for small arteries with multiple outlets: a patient-specific hepatic artery haemodynamics case study.
    Aramburu J; Antón R; Bernal N; Rivas A; Ramos JC; Sangro B; Bilbao JI
    Proc Inst Mech Eng H; 2015 Apr; 229(4):291-306. PubMed ID: 25934258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental microsphere targeting in a representative hepatic artery system.
    Richards AL; Kleinstreuer C; Kennedy AS; Childress E; Buckner GD
    IEEE Trans Biomed Eng; 2012 Jan; 59(1):198-204. PubMed ID: 21965193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computationally efficient particle release map determination for direct tumor-targeting in a representative hepatic artery system.
    Childress EM; Kleinstreuer C
    J Biomech Eng; 2014 Jan; 136(1):011012. PubMed ID: 24190601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of Yttrium-90 Distribution in Liver Radioembolization using Computational Fluid Dynamics and Deep Neural Networks.
    Taebi A; Vu CT; Roncali E
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4974-4977. PubMed ID: 33019103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.