BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 35711645)

  • 1. Construction and Optimization of the
    Wang S; Xu X; Lv X; Liu Y; Li J; Du G; Liu L
    Front Bioeng Biotechnol; 2022; 10():919526. PubMed ID: 35711645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered yeast for efficient de novo synthesis of 7-dehydrocholesterol.
    Qu L; Xiu X; Sun G; Zhang C; Yang H; Liu Y; Li J; Du G; Lv X; Liu L
    Biotechnol Bioeng; 2022 May; 119(5):1278-1289. PubMed ID: 35128633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mogrol Derived from Siraitia grosvenorii Mogrosides Suppresses 3T3-L1 Adipocyte Differentiation by Reducing cAMP-Response Element-Binding Protein Phosphorylation and Increasing AMP-Activated Protein Kinase Phosphorylation.
    Harada N; Ishihara M; Horiuchi H; Ito Y; Tabata H; Suzuki YA; Nakano Y; Yamaji R; Inui H
    PLoS One; 2016; 11(9):e0162252. PubMed ID: 27583359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo biosynthesis of sakuranetin from glucose by engineered Saccharomyces cerevisiae.
    Tu S; Xiao F; Mei C; Li S; Qiao P; Huang Z; He Y; Gong Z; Zhong W
    Appl Microbiol Biotechnol; 2023 Jun; 107(12):3899-3909. PubMed ID: 37148336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/dCas9-based metabolic pathway engineering for the systematic optimization of exopolysaccharide biosynthesis in Streptococcus thermophilus.
    Kong L; Xiong Z; Song X; Xia Y; Ai L
    J Dairy Sci; 2022 Aug; 105(8):6499-6512. PubMed ID: 35691751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systems metabolic engineering of Bacillus subtilis for efficient biosynthesis of 5-methyltetrahydrofolate.
    Yang H; Liu Y; Li J; Liu L; Du G; Chen J
    Biotechnol Bioeng; 2020 Jul; 117(7):2116-2130. PubMed ID: 32170863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient snailase-based production of mogrol from Luo Han Guo extract in an aqueous-organic system.
    Zhao Y; Su Y; Li Z; Luo C; Chen Y; Wu X
    Enzyme Microb Technol; 2023 Apr; 165():110212. PubMed ID: 36804180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPRi-Guided Metabolic Flux Engineering for Enhanced Protopanaxadiol Production in
    Lim SH; Baek JI; Jeon BM; Seo JW; Kim MS; Byun JY; Park SH; Kim SJ; Lee JY; Lee JH; Kim SC
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an efficient transient expression system for Siraitia grosvenorii fruit and functional characterization of two NADPH-cytochrome P450 reductases.
    Liao J; Xie L; Shi H; Cui S; Lan F; Luo Z; Ma X
    Phytochemistry; 2021 Sep; 189():112824. PubMed ID: 34102591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modular Engineering of
    Meng Y; Liu X; Zhang L; Zhao GR
    Microorganisms; 2022 Jul; 10(7):. PubMed ID: 35889121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mogrol Attenuates Osteoclast Formation and Bone Resorption by Inhibiting the TRAF6/MAPK/NF-κB Signaling Pathway
    Chen Y; Zhang L; Li Z; Wu Z; Lin X; Li N; Shen R; Wei G; Yu N; Gong F; Rui G; Xu R; Ji G
    Front Pharmacol; 2022; 13():803880. PubMed ID: 35496311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mogrol represents a novel leukemia therapeutic, via ERK and STAT3 inhibition.
    Liu C; Zeng Y; Dai LH; Cai TY; Zhu YM; Dou DQ; Ma LQ; Sun YX
    Am J Cancer Res; 2015; 5(4):1308-18. PubMed ID: 26101699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of Cucurbitadienol Catalyzed by CYP87D18 in the Biosynthesis of Mogrosides from Siraitia grosvenorii.
    Zhang J; Dai L; Yang J; Liu C; Men Y; Zeng Y; Cai Y; Zhu Y; Sun Y
    Plant Cell Physiol; 2016 May; 57(5):1000-7. PubMed ID: 26903528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPRi/dCpf1-mediated dynamic metabolic switch to enhance butenoic acid production in Escherichia coli.
    Ji X; Zhao H; Zhu H; Zhu K; Tang SY; Lou C
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5385-5393. PubMed ID: 32338294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction and optimization of Saccharomyces cerevisiae for synthesizing forskolin.
    Ju H; Zhang C; He S; Nan W; Lu W
    Appl Microbiol Biotechnol; 2022 Mar; 106(5-6):1933-1944. PubMed ID: 35235006
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Huang Y; Jiang D; Ren G; Yin Y; Sun Y; Liu T; Liu C
    Front Bioeng Biotechnol; 2021; 9():709120. PubMed ID: 34888299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPRi-Guided Multiplexed Fine-Tuning of Metabolic Flux for Enhanced Lacto-
    Dong X; Li N; Liu Z; Lv X; Shen Y; Li J; Du G; Wang M; Liu L
    J Agric Food Chem; 2020 Feb; 68(8):2477-2484. PubMed ID: 32013418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Saccharomyces cerevisiae for isoprenol production.
    Kim J; Baidoo EEK; Amer B; Mukhopadhyay A; Adams PD; Simmons BA; Lee TS
    Metab Eng; 2021 Mar; 64():154-166. PubMed ID: 33581331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast.
    Trenchard IJ; Siddiqui MS; Thodey K; Smolke CD
    Metab Eng; 2015 Sep; 31():74-83. PubMed ID: 26166409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotransformation of mogrosides from Siraitia grosvenorii Swingle by Saccharomyces cerevisiae.
    Chiu CH; Wang R; Lee CC; Lo YC; Lu TJ
    J Agric Food Chem; 2013 Jul; 61(29):7127-34. PubMed ID: 23796186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.