These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35711744)

  • 41. A versatile method for assessing pathogenicity of
    Orton ES; Clarke M; Brasier CM; Webber JF; Brown JKM
    For Pathol; 2019 Apr; 49(2):e12484. PubMed ID: 31130819
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Advances in the Detection of Emerging Tree Diseases by Measurements of VOCs and
    Borowik P; Oszako T; Malewski T; Zwierzyńska Z; Adamowicz L; Tarakowski R; Ślusarski S; Nowakowska JA
    Pathogens; 2021 Oct; 10(11):. PubMed ID: 34832516
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Assessing Genotypic and Environmental Effects on Endophyte Communities of
    Lahiri A; Murphy BR; Hodkinson TR
    J Fungi (Basel); 2021 Jul; 7(7):. PubMed ID: 34356944
    [No Abstract]   [Full Text] [Related]  

  • 44. Hyfraxinic Acid, a Phytotoxic Tetrasubstituted Octanoic Acid, Produced by the Ash (
    Masi M; Di Lecce R; Tuzi A; Linaldeddu BT; Montecchio L; Maddau L; Evidente A
    J Agric Food Chem; 2019 Dec; 67(49):13617-13623. PubMed ID: 31661270
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ash Dieback and Its Impact in Near-Natural Forest Remnants - A Plant Community-Based Inventory.
    Erfmeier A; Haldan KL; Beckmann LM; Behrens M; Rotert J; Schrautzer J
    Front Plant Sci; 2019; 10():658. PubMed ID: 31178880
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Detection and genetic characterisation of a novel mycovirus in Hymenoscyphus fraxineus, the causal agent of ash dieback.
    Schoebel CN; Zoller S; Rigling D
    Infect Genet Evol; 2014 Dec; 28():78-86. PubMed ID: 25219345
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Population genetic analysis of a parasitic mycovirus to infer the invasion history of its fungal host.
    Schoebel CN; Botella L; Lygis V; Rigling D
    Mol Ecol; 2017 May; 26(9):2482-2497. PubMed ID: 28160501
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Priming of Resistance-Related Phenolics: A Study of Plant-Associated Bacteria and
    Striganavičiūtė G; Žiauka J; Sirgedaitė-Šėžienė V; Vaitiekūnaitė D
    Microorganisms; 2021 Dec; 9(12):. PubMed ID: 34946104
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Amplifying feedback loop between growth and wood anatomical characteristics of Fraxinus excelsior explains size-related susceptibility to ash dieback.
    Klesse S; von Arx G; Gossner MM; Hug C; Rigling A; Queloz V
    Tree Physiol; 2021 May; 41(5):683-696. PubMed ID: 32705118
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The ash dieback invasion of Europe was founded by two genetically divergent individuals.
    McMullan M; Rafiqi M; Kaithakottil G; Clavijo BJ; Bilham L; Orton E; Percival-Alwyn L; Ward BJ; Edwards A; Saunders DGO; Garcia Accinelli G; Wright J; Verweij W; Koutsovoulos G; Yoshida K; Hosoya T; Williamson L; Jennings P; Ioos R; Husson C; Hietala AM; Vivian-Smith A; Solheim H; MaClean D; Fosker C; Hall N; Brown JKM; Swarbreck D; Blaxter M; Downie JA; Clark MD
    Nat Ecol Evol; 2018 Jun; 2(6):1000-1008. PubMed ID: 29686237
    [TBL] [Abstract][Full Text] [Related]  

  • 51. First Report of
    Linaldeddu BT; Bregant C; Montecchio L; Brglez A; Piškur B; Ogris N
    Plant Dis; 2022 Jan; 106(1):26-29. PubMed ID: 34515500
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tracking the invasion: dispersal of Hymenoscyphus fraxineus airborne inoculum at different scales.
    Grosdidier M; Ioos R; Husson C; Cael O; Scordia T; Marçais B
    FEMS Microbiol Ecol; 2018 May; 94(5):. PubMed ID: 29668932
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ash leaf metabolomes reveal differences between trees tolerant and susceptible to ash dieback disease.
    Sambles CM; Salmon DL; Florance H; Howard TP; Smirnoff N; Nielsen LR; McKinney LV; Kjær ED; Buggs RJA; Studholme DJ; Grant M
    Sci Data; 2017 Dec; 4():170190. PubMed ID: 29257137
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A first assessment of Fraxinus excelsior (common ash) susceptibility to Hymenoscyphus fraxineus (ash dieback) throughout the British Isles.
    Stocks JJ; Buggs RJA; Lee SJ
    Sci Rep; 2017 Nov; 7(1):16546. PubMed ID: 29185457
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genomic basis of European ash tree resistance to ash dieback fungus.
    Stocks JJ; Metheringham CL; Plumb WJ; Lee SJ; Kelly LJ; Nichols RA; Buggs RJA
    Nat Ecol Evol; 2019 Dec; 3(12):1686-1696. PubMed ID: 31740845
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transformation of European Ash (
    Hebda A; Liszka A; Zgłobicki P; Nawrot-Chorabik K; Lyczakowski JJ
    Plants (Basel); 2021 Nov; 10(11):. PubMed ID: 34834887
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reproductive mode and life cycle of the ash dieback pathogen Hymenoscyphus pseudoalbidus.
    Gross A; Zaffarano PL; Duo A; Grünig CR
    Fungal Genet Biol; 2012 Dec; 49(12):977-86. PubMed ID: 23036580
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Detection of Airborne Inoculum of Hymenoscyphus fraxineus: The Causal Agent of Ash Dieback.
    Dvořák M
    Methods Mol Biol; 2022; 2536():119-137. PubMed ID: 35819602
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Discovery of a new species of the
    Pourmoghaddam MJ; Lambert C; Surup F; Khodaparast SA; Krisai-Greilhuber I; Voglmayr H; Stadler M
    MycoKeys; 2020; 66():105-133. PubMed ID: 32377154
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Advanced spectroscopy-based phenotyping offers a potential solution to the ash dieback epidemic.
    Villari C; Dowkiw A; Enderle R; Ghasemkhani M; Kirisits T; Kjær ED; Marčiulynienė D; McKinney LV; Metzler B; Muñoz F; Nielsen LR; Pliūra A; Stener LG; Suchockas V; Rodriguez-Saona L; Bonello P; Cleary M
    Sci Rep; 2018 Nov; 8(1):17448. PubMed ID: 30487524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.