BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 3571185)

  • 21. Location of high and low affinity fatty acid binding sites on human serum albumin revealed by NMR drug-competition analysis.
    Simard JR; Zunszain PA; Hamilton JA; Curry S
    J Mol Biol; 2006 Aug; 361(2):336-51. PubMed ID: 16844140
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular dynamics study of conformational changes in human serum albumin by binding of fatty acids.
    Fujiwara S; Amisaki T
    Proteins; 2006 Aug; 64(3):730-9. PubMed ID: 16783783
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Binding of suprofen to human serum albumin. Role of the suprofen carboxyl group.
    Maruyama T; Lin CC; Yamasaki K; Miyoshi T; Imai T; Yamasaki M; Otagiri M
    Biochem Pharmacol; 1993 Mar; 45(5):1017-26. PubMed ID: 8461031
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design, synthesis and spectroscopic studies of resveratrol aliphatic acid ligands of human serum albumin.
    Jiang YL
    Bioorg Med Chem; 2008 Jun; 16(12):6406-14. PubMed ID: 18499462
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chromatographic analysis of the effects of fatty acids and glycation on binding by probes for Sudlow sites I and II to human serum albumin.
    Anguizola J; Debolt E; Suresh D; Hage DS
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 May; 1021():175-181. PubMed ID: 26468085
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spectroscopic analysis of the impact of oxidative stress on the structure of human serum albumin (HSA) in terms of its binding properties.
    Maciążek-Jurczyk M; Sułkowska A
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():265-82. PubMed ID: 25448930
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction of lafutidine in binding to human serum albumin in gastric ulcer therapy: STD-NMR, WaterLOGSY-NMR, NMR relaxation times, Tr-NOESY, molecule docking, and spectroscopic studies.
    Yang H; Huang Y; He J; Li S; Tang B; Li H
    Arch Biochem Biophys; 2016 Sep; 606():81-9. PubMed ID: 27457418
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of the binding of oxovanadium(IV) to human serum albumin.
    Correia I; Jakusch T; Cobbinna E; Mehtab S; Tomaz I; Nagy NV; Rockenbauer A; Pessoa JC; Kiss T
    Dalton Trans; 2012 Jun; 41(21):6477-87. PubMed ID: 22476413
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Correspondence of fatty acid and drug binding sites on human serum albumin: a two-dimensional nuclear magnetic resonance study.
    Krenzel ES; Chen Z; Hamilton JA
    Biochemistry; 2013 Mar; 52(9):1559-67. PubMed ID: 23360066
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Utilization of long-chain free fatty acids by human platelets.
    Spector AA; Hoak JC; Warner ED; Fry GL
    J Clin Invest; 1970 Aug; 49(8):1489-96. PubMed ID: 5431660
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Allosteric Sensing of Fatty Acid Binding by NMR: Application to Human Serum Albumin.
    Jafari N; Ahmed R; Gloyd M; Bloomfield J; Britz-McKibbin P; Melacini G
    J Med Chem; 2016 Aug; 59(16):7457-65. PubMed ID: 27429126
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative phosphorescence and optically detected magnetic resonance studies of fatty acid binding to serum albumin.
    Mao SY; Maki AH
    Biochemistry; 1987 Jun; 26(12):3576-82. PubMed ID: 3651398
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of free fatty acids on the concentration of free thyroxine in human serum: the role of albumin.
    Mendel CM; Frost PH; Cavalieri RR
    J Clin Endocrinol Metab; 1986 Dec; 63(6):1394-9. PubMed ID: 3782424
    [TBL] [Abstract][Full Text] [Related]  

  • 34. (19)F NMR spectroscopic characterization of the interaction of niflumic acid with human serum albumin.
    Kitamura K; Omran AA; Takegami S; Tanaka R; Kitade T
    Anal Bioanal Chem; 2007 Apr; 387(8):2843-8. PubMed ID: 17377783
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 19F NMR spectroscopic study on the binding of triflupromazine to bovine and human serum albumins.
    Kitamura K; Kume M; Yamamoto M; Takegami S; Kitade T
    J Pharm Biomed Anal; 2004 Oct; 36(2):411-4. PubMed ID: 15496337
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NMR metabolomics profiling of blood plasma mimics shows that medium- and long-chain fatty acids differently release metabolites from human serum albumin.
    Jupin M; Michiels PJ; Girard FC; Spraul M; Wijmenga SS
    J Magn Reson; 2014 Feb; 239():34-43. PubMed ID: 24374750
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determining molecular binding sites on human serum albumin by displacement of oleic acid.
    Sarver RW; Gao H; Tian F
    Anal Biochem; 2005 Dec; 347(2):297-302. PubMed ID: 16289007
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A spectroscopic study of the interaction of isoflavones with human serum albumin.
    Mahesha HG; Singh SA; Srinivasan N; Rao AG
    FEBS J; 2006 Feb; 273(3):451-67. PubMed ID: 16420470
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thyroid hormone-free albumin: charcoal treatment or resin treatment.
    Tanaka K; Matsumoto Y; Mochizuki M; Takezawa M; Yoshimura M; Motomura T; Fukuda F; Nakao K
    Ann Nucl Med; 1996 Aug; 10(3):357-9. PubMed ID: 8883716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NMR identification of endogenous metabolites interacting with fatted and non-fatted human serum albumin in blood plasma: Fatty acids influence the HSA-metabolite interaction.
    Jupin M; Michiels PJ; Girard FC; Spraul M; Wijmenga SS
    J Magn Reson; 2013 Mar; 228():81-94. PubMed ID: 23357430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.