These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35711912)

  • 41. In silico drug repositioning based on integrated drug targets and canonical correlation analysis.
    Chen H; Zhang Z; Zhang J
    BMC Med Genomics; 2022 Mar; 15(1):48. PubMed ID: 35249529
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Review of Computational Drug Repositioning Approaches.
    Huang G; Li J; Wang P; Li W
    Comb Chem High Throughput Screen; 2017 Dec; ():. PubMed ID: 29268682
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metabolic and signalling network maps integration: application to cross-talk studies and omics data analysis in cancer.
    Sompairac N; Modamio J; Barillot E; Fleming RMT; Zinovyev A; Kuperstein I
    BMC Bioinformatics; 2019 Apr; 20(Suppl 4):140. PubMed ID: 30999838
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multi-omics single-cell data integration and regulatory inference with graph-linked embedding.
    Cao ZJ; Gao G
    Nat Biotechnol; 2022 Oct; 40(10):1458-1466. PubMed ID: 35501393
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phylum-Spanning Neuropeptide GPCR Identification and Prioritization: Shaping Drug Target Discovery Pipelines for Nematode Parasite Control.
    Atkinson LE; McCoy CJ; Crooks BA; McKay FM; McVeigh P; McKenzie D; Irvine A; Harrington J; Rosa BA; Mitreva M; Marks NJ; Maule AG; Mousley A
    Front Endocrinol (Lausanne); 2021; 12():718363. PubMed ID: 34659113
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Network-based prioritization of cancer genes by integrative ranks from multi-omics data.
    Shang H; Liu ZP
    Comput Biol Med; 2020 Apr; 119():103692. PubMed ID: 32339126
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prediction of novel drug indications using network driven biological data prioritization and integration.
    Qabaja A; Alshalalfa M; Alanazi E; Alhajj R
    J Cheminform; 2014 Jan; 6(1):1. PubMed ID: 24397863
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Proteotranscriptomic-Based Computational Drug-Repositioning Method for Alzheimer's Disease.
    Lee SY; Song MY; Kim D; Park C; Park DK; Kim DG; Yoo JS; Kim YH
    Front Pharmacol; 2019; 10():1653. PubMed ID: 32063857
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genomic Evidence Supports the Recognition of Endometriosis as an Inflammatory Systemic Disease and Reveals Disease-Specific Therapeutic Potentials of Targeting Neutrophil Degranulation.
    Bao C; Wang H; Fang H
    Front Immunol; 2022; 13():758440. PubMed ID: 35401535
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Integration of multi-omics technologies for crop improvement: Status and prospects.
    Zhang R; Zhang C; Yu C; Dong J; Hu J
    Front Bioinform; 2022; 2():1027457. PubMed ID: 36438626
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bioinformatics Resource Manager: a systems biology web tool for microRNA and omics data integration.
    Brown J; Phillips AR; Lewis DA; Mans MA; Chang Y; Tanguay RL; Peterson ES; Waters KM; Tilton SC
    BMC Bioinformatics; 2019 May; 20(1):255. PubMed ID: 31101000
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Drug Repositioning for Alzheimer's Disease Based on Systematic 'omics' Data Mining.
    Zhang M; Schmitt-Ulms G; Sato C; Xi Z; Zhang Y; Zhou Y; St George-Hyslop P; Rogaeva E
    PLoS One; 2016; 11(12):e0168812. PubMed ID: 28005991
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Computational drug repositioning using low-rank matrix approximation and randomized algorithms.
    Luo H; Li M; Wang S; Liu Q; Li Y; Wang J
    Bioinformatics; 2018 Jun; 34(11):1904-1912. PubMed ID: 29365057
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Drug repositioning by integrating target information through a heterogeneous network model.
    Wang W; Yang S; Zhang X; Li J
    Bioinformatics; 2014 Oct; 30(20):2923-30. PubMed ID: 24974205
    [TBL] [Abstract][Full Text] [Related]  

  • 55. MoGCN: A Multi-Omics Integration Method Based on Graph Convolutional Network for Cancer Subtype Analysis.
    Li X; Ma J; Leng L; Han M; Li M; He F; Zhu Y
    Front Genet; 2022; 13():806842. PubMed ID: 35186034
    [TBL] [Abstract][Full Text] [Related]  

  • 56. NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines.
    Meunier D; Pascarella A; Altukhov D; Jas M; Combrisson E; Lajnef T; Bertrand-Dubois D; Hadid V; Alamian G; Alves J; Barlaam F; Saive AL; Dehgan A; Jerbi K
    Neuroimage; 2020 Oct; 219():117020. PubMed ID: 32522662
    [TBL] [Abstract][Full Text] [Related]  

  • 57. deepDR: a network-based deep learning approach to in silico drug repositioning.
    Zeng X; Zhu S; Liu X; Zhou Y; Nussinov R; Cheng F
    Bioinformatics; 2019 Dec; 35(24):5191-5198. PubMed ID: 31116390
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A comparative study of multi-omics integration tools for cancer driver gene identification and tumour subtyping.
    Sathyanarayanan A; Gupta R; Thompson EW; Nyholt DR; Bauer DC; Nagaraj SH
    Brief Bioinform; 2020 Dec; 21(6):1920-1936. PubMed ID: 31774481
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Open-source chemogenomic data-driven algorithms for predicting drug-target interactions.
    Hao M; Bryant SH; Wang Y
    Brief Bioinform; 2019 Jul; 20(4):1465-1474. PubMed ID: 29420684
    [TBL] [Abstract][Full Text] [Related]  

  • 60. KinomeRun: An interactive utility for kinome target screening and interaction fingerprint analysis towards holistic visualization on kinome tree.
    Ansar S; Vetrivel U
    Chem Biol Drug Des; 2020 Oct; 96(4):1162-1175. PubMed ID: 32418310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.