These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 35711960)
1. Chemoenzymatic Synthesis of Asymmetrically Branched Human Milk Oligosaccharide Lacto- Ooi KE; Zhang XW; Kuo CY; Liu YJ; Yu CC Front Chem; 2022; 10():905105. PubMed ID: 35711960 [TBL] [Abstract][Full Text] [Related]
2. Chemical Synthesis of Human Milk Oligosaccharides: Lacto- Bandara MD; Stine KJ; Demchenko AV J Org Chem; 2019 Dec; 84(24):16192-16198. PubMed ID: 31749363 [TBL] [Abstract][Full Text] [Related]
3. Chemical synthesis of human milk oligosaccharides: lacto-N-neohexaose (Galβ1 → 4GlcNAcβ1→) Bandara MD; Stine KJ; Demchenko AV Org Biomol Chem; 2020 Mar; 18(9):1747-1753. PubMed ID: 32048706 [TBL] [Abstract][Full Text] [Related]
4. Oligosaccharides of human milk. Structural studies of two new octasaccharides, difucosyl derivatives of para-lacto-N-hexaose and para-lacto-N-neohexaose. Yamashita K; Tachibana Y; Kobata A J Biol Chem; 1977 Aug; 252(15):5408-11. PubMed ID: 885859 [TBL] [Abstract][Full Text] [Related]
5. Chemoenzymatic synthesis of lacto-N-tetrasaccharide and sialyl lacto-N-tetrasaccharides. Yao W; Yan J; Chen X; Wang F; Cao H Carbohydr Res; 2015 Jan; 401():5-10. PubMed ID: 25464075 [TBL] [Abstract][Full Text] [Related]
6. Facile enzymatic conversion of lactose into lacto-N-tetraose and lacto-N-neotetraose. Murata T; Inukai T; Suzuki M; Yamagishi M; Usui AT Glycoconj J; 1999 Mar; 16(3):189-95. PubMed ID: 10596893 [TBL] [Abstract][Full Text] [Related]
7. Chemical Synthesis of Human Milk Oligosaccharides: para-Lacto-N-hexaose and para-Lacto-N-neohexaose. Singh Y; Escopy S; Shadrick M; Bandara MD; Stine KJ; Demchenko AV Chemistry; 2023 Nov; 29(64):e202302288. PubMed ID: 37639512 [TBL] [Abstract][Full Text] [Related]
8. Cooperation of β-galactosidase and β-N-acetylhexosaminidase from bifidobacteria in assimilation of human milk oligosaccharides with type 2 structure. Miwa M; Horimoto T; Kiyohara M; Katayama T; Kitaoka M; Ashida H; Yamamoto K Glycobiology; 2010 Nov; 20(11):1402-9. PubMed ID: 20581010 [TBL] [Abstract][Full Text] [Related]
9. Determination by electrospray mass spectrometry and 1H-NMR spectroscopy of primary structures of variously fucosylated neutral oligosaccharides based on the iso-lacto-N-octaose core. Kogelberg H; Piskarev VE; Zhang Y; Lawson AM; Chai W Eur J Biochem; 2004 Mar; 271(6):1172-86. PubMed ID: 15009196 [TBL] [Abstract][Full Text] [Related]
10. Release and utilization of N-acetyl-D-glucosamine from human milk oligosaccharides by Bifidobacterium longum subsp. infantis. Garrido D; Ruiz-Moyano S; Mills DA Anaerobe; 2012 Aug; 18(4):430-5. PubMed ID: 22579845 [TBL] [Abstract][Full Text] [Related]
11. Structural determination of novel lacto-N-decaose and its monofucosylated analogue from human milk by electrospray tandem mass spectrometry and 1H NMR spectroscopy. Chai W; Piskarev VE; Zhang Y; Lawson AM; Kogelberg H Arch Biochem Biophys; 2005 Feb; 434(1):116-27. PubMed ID: 15629115 [TBL] [Abstract][Full Text] [Related]
12. Chemical structures of oligosaccharides in milks of the American black bear (Ursus americanus americanus) and cheetah (Acinonyx jubatus). Urashima T; Umewaki M; Taufik E; Ohshima T; Fukuda K; Saito T; Whitehouse-Tedd K; Budd JA; Oftedal OT Glycoconj J; 2020 Feb; 37(1):57-76. PubMed ID: 31828568 [TBL] [Abstract][Full Text] [Related]
13. Chemical characterization of milk oligosaccharides of the eastern quoll (Dasyurus viverrinus). Urashima T; Sun Y; Fukuda K; Hirayama K; Taufik E; Nakamura T; Saito T; Merchant J; Green B; Messer M Glycoconj J; 2015 Aug; 32(6):361-70. PubMed ID: 26047593 [TBL] [Abstract][Full Text] [Related]
14. The chemical synthesis of human milk oligosaccharides: Lacto-N-neotetraose (Galβ1→4GlcNAcβ1→3Galβ1→4Glc). Bandara MD; Stine KJ; Demchenko AV Carbohydr Res; 2019 Sep; 483():107743. PubMed ID: 31319351 [TBL] [Abstract][Full Text] [Related]
15. Chemical characterization of milk oligosaccharides of the common brushtail possum (Trichosurus vulpecula). Urashima T; Fujita S; Fukuda K; Nakamura T; Saito T; Cowan P; Messer M Glycoconj J; 2014 Jul; 31(5):387-99. PubMed ID: 24906475 [TBL] [Abstract][Full Text] [Related]
16. Characterization of lacto-N-hexaose and two fucosylated derivatives from human milk by high-performance liquid chromatography and proton NMR spectroscopy. Dua VK; Goso K; Dube VE; Bush CA J Chromatogr; 1985 Jun; 328():259-69. PubMed ID: 3839799 [TBL] [Abstract][Full Text] [Related]
17. Effective Separation of Human Milk Glycosides using Carbon Dioxide Supercritical Fluid Chromatography. Liou SW; Fang JL; Lin HW; Tsai TW; Huang HH; Liang CY; Yang CR; Wei GT; Yu CC Chem Asian J; 2021 Mar; 16(5):492-497. PubMed ID: 33417290 [TBL] [Abstract][Full Text] [Related]
18. A Bacterial β1-3-Galactosyltransferase Enables Multigram-Scale Synthesis of Human Milk Lacto- McArthur JB; Yu H; Chen X ACS Catal; 2019 Dec; 9(12):10721-10726. PubMed ID: 33408950 [TBL] [Abstract][Full Text] [Related]
19. Physiological effects, biosynthesis, and derivatization of key human milk tetrasaccharides, lacto- Zhu Y; Luo G; Wan L; Meng J; Lee SY; Mu W Crit Rev Biotechnol; 2022 Jun; 42(4):578-596. PubMed ID: 34346270 [TBL] [Abstract][Full Text] [Related]
20. Lacto-N-biosidase encoded by a novel gene of Bifidobacterium longum subspecies longum shows unique substrate specificity and requires a designated chaperone for its active expression. Sakurama H; Kiyohara M; Wada J; Honda Y; Yamaguchi M; Fukiya S; Yokota A; Ashida H; Kumagai H; Kitaoka M; Yamamoto K; Katayama T J Biol Chem; 2013 Aug; 288(35):25194-25206. PubMed ID: 23843461 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]