These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 3571198)

  • 21. Similar characteristics of guanine nucleotide regulatory sites involved in adenylate cyclase activation, specific GTPase activity, and cholecystokinin binding in rat pancreatic plasma membranes.
    Lambert M; Deschodt-Lanckman M; Furnelle J; Christophe J
    J Cyclic Nucleotide Res; 1981; 7(6):385-97. PubMed ID: 6125533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Essential synergy between Ca2+ and guanine nucleotides in exocytotic secretion from permeabilized rat mast cells.
    Howell TW; Cockcroft S; Gomperts BD
    J Cell Biol; 1987 Jul; 105(1):191-7. PubMed ID: 2440894
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transition-state analysis of a Vmax mutant of AMP nucleosidase by the application of heavy-atom kinetic isotope effects.
    Parkin DW; Mentch F; Banks GA; Horenstein BA; Schramm VL
    Biochemistry; 1991 May; 30(18):4586-94. PubMed ID: 2021651
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of guanine nucleotides and divalent cations on forskolin activation of rabbit luteal adenylyl cyclase: evidence for the existence of an inhibitory guanine nucleotide-binding regulatory component.
    Abramowitz J; Campbell AR
    Endocrinology; 1984 Jun; 114(6):1955-62. PubMed ID: 6327229
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transition-state structures for N-glycoside hydrolysis of AMP by acid and by AMP nucleosidase in the presence and absence of allosteric activator.
    Mentch F; Parkin DW; Schramm VL
    Biochemistry; 1987 Feb; 26(3):921-30. PubMed ID: 3552038
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of thyroid adenylate cyclase: guanyl nucleotide modulation of thyrotropin receptor-adenylate cyclase function.
    Saltiel AR; Powell-Jones CH; Thomas CG; Nayfeh SN
    Endocrinology; 1981 Nov; 109(5):1578-89. PubMed ID: 6271536
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction of Mn2+ and MnATP2- with the allosteric sites of AMP nucleosidase.
    Schramm VL; Reed GH
    J Biol Chem; 1980 Jun; 255(12):5796-801. PubMed ID: 6247346
    [No Abstract]   [Full Text] [Related]  

  • 28. AMP nucleosidase: kinetic mechanism and thermodynamics.
    DeWolf WE; Emig FA; Schramm VL
    Biochemistry; 1986 Jul; 25(14):4132-40. PubMed ID: 3741845
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of initial velocity and binding data for allosteric adenosine monophosphate nucleosidase.
    Schramm VL
    J Biol Chem; 1976 Jun; 251(11):3417-24. PubMed ID: 931993
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Purine nucleotide pyrophosphotransferase from Streptomyces morookaensis, capable of synthesizing pppApp and pppGpp.
    Oki T; Yoshimoto A; Sato S; Takamatsu A
    Biochim Biophys Acta; 1975 Dec; 410(2):262-72. PubMed ID: 1088
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catalytic and allosteric mechanism of AMP nucleosidase from primary, beta-secondary, and multiple heavy atom kinetic isotope effects.
    Parkin DW; Schramm VL
    Biochemistry; 1987 Feb; 26(3):913-20. PubMed ID: 3552037
    [TBL] [Abstract][Full Text] [Related]  

  • 32. From (p)ppGpp to (pp)pGpp: Characterization of Regulatory Effects of pGpp Synthesized by the Small Alarmone Synthetase of Enterococcus faecalis.
    Gaca AO; Kudrin P; Colomer-Winter C; Beljantseva J; Liu K; Anderson B; Wang JD; Rejman D; Potrykus K; Cashel M; Hauryliuk V; Lemos JA
    J Bacteriol; 2015 Sep; 197(18):2908-19. PubMed ID: 26124242
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Role of guanidylic nucleotides in the adenylate cyclase activity of the rat liver].
    Hanoune J; Pecker F; Lacombe ML; Billon MC
    Ann Endocrinol (Paris); 1975; 36(4):215-6. PubMed ID: 1203015
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of AMP nucleosidase in Azotobacter vinelandii.
    Yoshino M; Ogasawara N; Suzuki N; Kotake Y
    Biochim Biophys Acta; 1967; 146(2):620-2. PubMed ID: 6066310
    [No Abstract]   [Full Text] [Related]  

  • 35. Guanine triphosphate-binding site regulation by follicle-stimulating hormone and guanine diphosphate in membranes from immature rat Sertoli cells.
    Fletcher PW; Reichert LE
    Endocrinology; 1986 Nov; 119(5):2221-6. PubMed ID: 3095103
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of the interaction of dinitrogenase reductase-activating glycohydrolase from Rhodospirillum rubrum with bacterial membranes.
    Halbleib CM; Ludden PW
    Arch Microbiol; 1999 Jul; 172(1):51-8. PubMed ID: 10398752
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dissociation and association of AMP nucleosidase from Azotobacter vinelandii.
    Yoshino M; Ogasawara N; Suzuki N; Kotake Y
    Biochim Biophys Acta; 1968 Aug; 167(1):216-8. PubMed ID: 5686297
    [No Abstract]   [Full Text] [Related]  

  • 38. NADH oxidase activity of rat liver plasma membrane activated by guanine nucleotides.
    Morré DJ; Davidson M; Geilen C; Lawrence J; Flesher G; Crowe R; Crane FL
    Biochem J; 1993 Jun; 292 ( Pt 3)(Pt 3):647-53. PubMed ID: 8317995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Allosteric properties of the biosynthetic L-threonine dehydratase from Azotobacter vinelandii].
    Kretovich VL; Loseva LP
    Mikrobiologiia; 1973; 42(5):772-8. PubMed ID: 4792241
    [No Abstract]   [Full Text] [Related]  

  • 40. Evidence of substantial separation of the catalytic and allosteric sites of AMP nucleosidase.
    DeWolf WE; Markham GD; Schramm VL
    J Biol Chem; 1980 Sep; 255(17):8210-5. PubMed ID: 6251048
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.