BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 3571216)

  • 1. Ruthenium ammine complexes as electron acceptors for growth stimulation by plasma membrane electron transport.
    Laliberté JF; Sun IL; Crane FL; Clarke MJ
    J Bioenerg Biomembr; 1987 Feb; 19(1):69-81. PubMed ID: 3571216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmembrane redox in control of cell growth. Stimulation of HeLa cell growth by ferricyanide and insulin.
    Sun IL; Crane FL; Grebing C; Löw H
    Exp Cell Res; 1985 Feb; 156(2):528-36. PubMed ID: 3881265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transplasma membrane redox stimulates HeLa cell growth.
    Sun IL; Crane FL; Löw H; Grebing C
    Biochem Biophys Res Commun; 1984 Dec; 125(2):649-54. PubMed ID: 6393980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of the mitochondrial NADH-ubiquinone oxidoreductase interaction with hexammineruthenium(III).
    Sled VD; Vinogradov AD
    Biochim Biophys Acta; 1993 Mar; 1141(2-3):262-8. PubMed ID: 8443212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloroquine-sensitive transplasmalemma electron transport in Tetrahymena pyriformis: a hypothesis for control of parasite protozoa through transmembrane redox.
    Barr R; Branstetter BA; Rajnicek A; Crane FL; Löw H
    Biochim Biophys Acta; 1991 Jun; 1058(2):261-8. PubMed ID: 1904770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for coenzyme Q function in transplasma membrane electron transport.
    Sun IL; Sun EE; Crane FL; Morré DJ
    Biochem Biophys Res Commun; 1990 Nov; 172(3):979-84. PubMed ID: 2244922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catecholamine complexes of ruthenium-edta and their redox chemistry.
    Rein FN; Rocha RC; Toma HE
    J Inorg Biochem; 2001 Jun; 85(2-3):155-66. PubMed ID: 11410235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of transplasma membrane electron transport by transferrin-adriamycin conjugates.
    Sun IL; Sun EE; Crane FL; Morré DJ; Faulk WP
    Biochim Biophys Acta; 1992 Mar; 1105(1):84-8. PubMed ID: 1567898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dipolar ruthenium(II) ammine complexes as electron transfer mediators of amperometric glucose sensors.
    Nakabayashi Y; Hirosaki Y; Yamauchi O
    Bioelectrochemistry; 2006 Oct; 69(2):216-22. PubMed ID: 16678500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ruthenium bisbipyridine complexes of horse heart cytochrome c: characterization and comparative intramolecular electron-transfer rates determined by pulse radiolysis and flash photolysis.
    Luo J; Reddy KB; Salameh AS; Wishart JF; Isied SS
    Inorg Chem; 2000 May; 39(11):2321-9. PubMed ID: 12526492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tetranuclear polybipyridyl complexes of Ru(II) and Mn(II), their electro- and photo-induced transformation into di-mu-oxo Mn(III)Mn(IV) hexanuclear complexes.
    Romain S; Baffert C; Dumas S; Chauvin J; Leprêtre JC; Daveloose D; Deronzier A; Collomb MN
    Dalton Trans; 2006 Dec; (48):5691-702. PubMed ID: 17146534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-capacity redox control at the plasma membrane of mammalian cells: trans-membrane, cell surface, and serum NADH-oxidases.
    Berridge MV; Tan AS
    Antioxid Redox Signal; 2000; 2(2):231-42. PubMed ID: 11229528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hexaammineruthenium as an electron donor to mitochondrial cytochrome oxidase: membrane potential generation in the absence of cytochrome c.
    Tsofina LM; Liberman EA; Vygodina TV; Konstantinov AA
    Biochem Int; 1986 Jan; 12(1):103-10. PubMed ID: 3004496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron transport and cytochromes in aerobically grown Proteus mirabilis.
    van Wielink JE; Reijnders WN; Oltmann LF; Stouthamer AH
    Arch Microbiol; 1983 Nov; 136(2):152-7. PubMed ID: 6360068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transplasma membrane electron transport comes in two flavors.
    Lane DJ; Lawen A
    Biofactors; 2008; 34(3):191-200. PubMed ID: 19734120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Filamentation of Escherichia coli K12 elicited by some monomeric, dimeric and trimeric complexes of ruthenium in various oxidation states.
    Gibson JF; Hughes MN; Poole RK; Rees JF
    Chem Biol Interact; 1985 May; 53(3):351-64. PubMed ID: 3159489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of a photoactivated ruthenium dimer complex to measure electron transfer between the Rieske iron-sulfur protein and cytochrome c(1) in the cytochrome bc(1) complex.
    Sadoski RC; Engstrom G; Tian H; Zhang L; Yu CA; Yu L; Durham B; Millett F
    Biochemistry; 2000 Apr; 39(15):4231-6. PubMed ID: 10757970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of transferrin in the reduction of iron by the transplasma membrane electron transport system.
    Löw H; Grebing C; Lindgren A; Tally M; Sun IL; Crane FL
    J Bioenerg Biomembr; 1987 Oct; 19(5):535-49. PubMed ID: 3693344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A spectroscopic study of the reaction of NAMI, a novel ruthenium(III)anti-neoplastic complex, with bovine serum albumin.
    Messori L; Orioli P; Vullo D; Alessio E; Iengo E
    Eur J Biochem; 2000 Feb; 267(4):1206-13. PubMed ID: 10672032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methods to explore cellular uptake of ruthenium complexes.
    Puckett CA; Barton JK
    J Am Chem Soc; 2007 Jan; 129(1):46-7. PubMed ID: 17199281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.