These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 3571219)

  • 61. Noninvasive imaging of the distribution in oxygen in tissue in vivo using near-infrared phosphors.
    Vinogradov SA; Lo LW; Jenkins WT; Evans SM; Koch C; Wilson DF
    Biophys J; 1996 Apr; 70(4):1609-17. PubMed ID: 8785320
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Determination of trace mercury by solid substrate-room temperature phosphorimetry quenching method based on catalytic effect of Hg2+ on formation of the ion association complex [Sn(XO)6]4+.[(Fin)4].
    Liu JM; Wu RH; Li DC; Zhou P; Zheng MM; Zeng XY; Liu DX; Huang XM; Zhu GH
    J Fluoresc; 2006 Sep; 16(5):625-30. PubMed ID: 17013675
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Reversible photobleaching of fluorescein conjugates in air-saturated viscous solutions: singlet and triplet state quenching by tryptophan.
    Periasamy N; Bicknese S; Verkman AS
    Photochem Photobiol; 1996 Mar; 63(3):265-71. PubMed ID: 8881329
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Photophysics of indole-2-carboxylic acid (I2C) and indole-5-carboxylic acid (I5C): heavy atom effect.
    Kowalska-Baron A; Gałęcki K; Wysocki S
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Dec; 116():183-95. PubMed ID: 23933843
    [TBL] [Abstract][Full Text] [Related]  

  • 65. In vivo tissue pO2 measurements in hamster skinfold by recessed pO2 microelectrodes and phosphorescence quenching are in agreement.
    Buerk DG; Tsai AG; Intaglietta M; Johnson PC
    Microcirculation; 1998; 5(2-3):219-25. PubMed ID: 9789262
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fibre-optic oxygen sensor based on phosphorescence quenching.
    Papkovskii DB; Yaropolov AI; Savitskii AP; Olah J; Rumyantseva VD; Mironov AF; Troyanovskii IV; Sadovskii NA
    Biomed Sci; 1991; 2(5):536-9. PubMed ID: 1840843
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A Phosphorescence Quenching-Based Intelligent Dissolved Oxygen Sensor on an Optofluidic Platform.
    Wang F; Chen L; Zhu J; Hu X; Yang Y
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33800237
    [TBL] [Abstract][Full Text] [Related]  

  • 68. An effective oxygen content detection in phosphorescence of PtOEP-C6/Poly (St-co-TFEMA).
    Zhang H; Liu T; Zhang X; Zhao H; Zheng Y; Qin F; Zhang Z; Sheng T; Tian Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Aug; 257():119786. PubMed ID: 33887511
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Probing the microenvironment of benzo[a]pyrene diol epoxide-DNA adducts by triplet excited state quenching methods.
    Poulos AT; Kuzmin V; Geacintov NE
    J Biochem Biophys Methods; 1982 Sep; 6(4):269-81. PubMed ID: 6815256
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Localization of tumors and evaluation of their state of oxygenation by phosphorescence imaging.
    Wilson DF; Cerniglia GJ
    Cancer Res; 1992 Jul; 52(14):3988-93. PubMed ID: 1617675
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fluorometric investigation of the interaction of bovine serum albumin with surfactants and 6-mercaptopurine.
    Hu YJ; Liu Y; Jiang W; Zhao RM; Qu SS
    J Photochem Photobiol B; 2005 Sep; 80(3):235-42. PubMed ID: 16005637
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Study on aggregation of palladium-porphyrins using room temperature phosphorescence.
    Li GR; Wu JJ; Jin WJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Jan; 60(1-2):265-9. PubMed ID: 14670487
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Tryptophan phosphorescence of the Ca2+-ATPase of sarcoplasmic reticulum.
    Vanderkooi JM; Papp S; Pikula S; Martonosi A
    Biochim Biophys Acta; 1988 Nov; 957(2):230-6. PubMed ID: 2973355
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Room temperature fluorescence and phosphorescence study on the interactions of iodide ions with single tryptophan containing serum albumins.
    Gałęcki K; Kowalska-Baron A
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Dec; 169():16-24. PubMed ID: 27303942
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Gold nanoclusters as a quenchable fluorescent probe for sensing oxygen at high temperatures.
    Martín-Barreiro A; de Marcos S; Galbán J
    Mikrochim Acta; 2018 Feb; 185(3):171. PubMed ID: 29594649
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The eosin-5-maleimide binding site on human erythrocyte band 3: investigation of membrane sidedness and location of charged residues by triplet state quenching.
    Pan RJ; Cherry RJ
    Biochemistry; 1998 Jul; 37(28):10238-45. PubMed ID: 9665731
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Chemiluminescent probes for singlet oxygen in biological reactions.
    Thompson A; Seliger HH; Posner GH
    Methods Enzymol; 1986; 133():569-84. PubMed ID: 3821552
    [No Abstract]   [Full Text] [Related]  

  • 78. Expansion of intensity correlation spectroscopy for lifetime measurements--application to intracellular oxygen dynamics measurements.
    Nishimura G; Pack C; Tamura M
    J Biomed Opt; 2007; 12(2):020503. PubMed ID: 17477702
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Phosphorescence decay time measurements using intensity correlation spectroscopy.
    Nishimura G; Pack CG; Tamura M
    Exp Mol Pathol; 2007 Apr; 82(2):175-83. PubMed ID: 17346700
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Enantioselective quenching of room-temperature phosphorescence lifetimes of proteins: bovine and human serum albumins.
    Wei Y; Dong C; Liu D; Shuang S; Huie CW
    Biomacromolecules; 2007 Mar; 8(3):761-4. PubMed ID: 17274655
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.