These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 3571257)

  • 1. Translocation of fatty acids across the basolateral rat liver plasma membrane is driven by an active potential-sensitive sodium-dependent transport system.
    Stremmel W
    J Biol Chem; 1987 May; 262(13):6284-9. PubMed ID: 3571257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct determination of the driving forces for taurocholate uptake into rat liver plasma membrane vesicles.
    Duffy MC; Blitzer BL; Boyer JL
    J Clin Invest; 1983 Oct; 72(4):1470-81. PubMed ID: 6630516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hepatocellular uptake of oleate is energy dependent, sodium linked, and inhibited by an antibody to a hepatocyte plasma membrane fatty acid binding protein.
    Stremmel W; Strohmeyer G; Berk PD
    Proc Natl Acad Sci U S A; 1986 Jun; 83(11):3584-8. PubMed ID: 3459144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hepatic taurine transport: a Na+-dependent carrier on the basolateral plasma membrane.
    Bucuvalas JC; Goodrich AL; Suchy FJ
    Am J Physiol; 1987 Sep; 253(3 Pt 1):G351-8. PubMed ID: 3631271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Na(+)-dependent and an Na(+)-independent system for glutamine transport in rat liver basolateral membrane vesicles.
    Said HM; Hollander D; Khorchid S
    Gastroenterology; 1991 Oct; 101(4):1094-101. PubMed ID: 1889703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective inhibition of long-chain fatty acid uptake in short-term cultured rat hepatocytes by an antibody to the rat liver plasma membrane fatty acid-binding protein.
    Stremmel W; Theilmann L
    Biochim Biophys Acta; 1986 Jun; 877(1):191-7. PubMed ID: 3718997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium gradient-dependent L-glutamate transport is localized to the canalicular domain of liver plasma membranes. Studies in rat liver sinusoidal and canalicular membrane vesicles.
    Ballatori N; Moseley RH; Boyer JL
    J Biol Chem; 1986 May; 261(14):6216-21. PubMed ID: 2871024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyl/bile acid exchange. A new mechanism for the uphill transport of cholate by basolateral liver plasma membrane vesicles.
    Blitzer BL; Terzakis C; Scott KA
    J Biol Chem; 1986 Sep; 261(26):12042-6. PubMed ID: 3017959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na-H exchange in rat liver basolateral but not canalicular plasma membrane vesicles.
    Moseley RH; Meier PJ; Aronson PS; Boyer JL
    Am J Physiol; 1986 Jan; 250(1 Pt 1):G35-43. PubMed ID: 3002192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatty acid uptake by human hepatoma cell lines represents a carrier-mediated uptake process.
    Stremmel W; Diede HE
    Biochim Biophys Acta; 1989 Oct; 1013(3):218-22. PubMed ID: 2553104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of sodium-dependent and sodium-independent dicarboxylate transport systems in rat liver basolateral membrane vesicles.
    Zimmerli B; O'Neill B; Meier PJ
    Pflugers Arch; 1992 Jul; 421(4):329-35. PubMed ID: 1408656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of phallotoxin uptake by basolateral plasma membrane vesicles from rat liver: evidence for a carrier-mediated transport.
    Täfler M; Ziegler K; Frimmer M
    Naunyn Schmiedebergs Arch Pharmacol; 1988 Feb; 337(2):231-7. PubMed ID: 3368021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na+-glycine cotransport in canalicular liver plasma membrane vesicles.
    Moseley RH; Ballatori N; Murphy SM
    Am J Physiol; 1988 Aug; 255(2 Pt 1):G253-9. PubMed ID: 3407780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of amino acids in renal brush border membrane vesicles. Uptake of the neutral amino acid L-alanine.
    Fass SJ; Hammerman MR; Sacktor B
    J Biol Chem; 1977 Jan; 252(2):583-90. PubMed ID: 833145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. D(-)3-hydroxybutyrate cotransport with Na in rat renal brush border membrane vesicles.
    Barac-Nieto M
    Pflugers Arch; 1987 Apr; 408(4):321-7. PubMed ID: 3588250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of ATP-depleted cells in the analysis of taurocholate uptake by isolated rat hepatocytes.
    Yamazaki M; Sugiyama Y; Suzuki H; Iga T; Hanano M
    J Hepatol; 1992 Jan; 14(1):54-63. PubMed ID: 1737916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of surface and intracellular pH on hepatocellular fatty acid uptake.
    Elsing C; Kassner A; Stremmel W
    Am J Physiol; 1996 Dec; 271(6 Pt 1):G1067-73. PubMed ID: 8997251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatty acid uptake by isolated rat heart myocytes represents a carrier-mediated transport process.
    Stremmel W
    J Clin Invest; 1988 Mar; 81(3):844-52. PubMed ID: 3343344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Taurine transport across hepatocyte plasma membranes: analysis in isolated rat liver sinusoidal plasma membrane vesicles.
    Inoue M; Arias IM
    J Biochem; 1988 Jul; 104(1):155-8. PubMed ID: 3220826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Taurocholate transport by basolateral plasma membrane vesicles isolated from human liver.
    Novak DA; Ryckman FC; Suchy FJ
    Hepatology; 1989 Oct; 10(4):447-53. PubMed ID: 2777205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.