BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 3571272)

  • 1. Enhanced ability of skeletal muscle containing cyclocreatine phosphate to sustain ATP levels during ischemia following beta-adrenergic stimulation.
    Turner DM; Walker JB
    J Biol Chem; 1987 May; 262(14):6605-9. PubMed ID: 3571272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative abilities of phosphagens with different thermodynamic or kinetic properties to help sustain ATP and total adenylate pools in heart during ischemia.
    Turner DM; Walker JB
    Arch Biochem Biophys; 1985 May; 238(2):642-51. PubMed ID: 3994395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of analgo of phosphocreatine in muscle of chicks fed 1-carboxymethyl-2-iminoimidazolidine (cyclocreatine).
    Griffiths GR; Walker JB
    J Biol Chem; 1976 Apr; 251(7):2049-54. PubMed ID: 1270421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and accumulation of an extremely stable high-energy phosphate compound by muscle, heart, and brain of animals fed the creatine analog, 1-carboxyethyl-2-iminoimidazolidine (homocyclocreatine).
    Roberts JJ; Walker JB
    Arch Biochem Biophys; 1983 Feb; 220(2):563-71. PubMed ID: 6824340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of the synthetic phosphagen cyclocreatine phosphate by a simple brain model during stimulation by neuroexcitatory amino acids.
    Woznicki DT; Walker JB
    J Neurochem; 1988 May; 50(5):1640-7. PubMed ID: 2896231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy metabolism of skeletal muscle containing cyclocreatine phosphate. Delay in onset of rigor mortis and decreased glycogenolysis in response to ischemia or epinephrine.
    Annesley TM; Walker JB
    J Biol Chem; 1980 May; 255(9):3924-30. PubMed ID: 7372660
    [No Abstract]   [Full Text] [Related]  

  • 7. Myocardial protection during ischemia by prior feeding with the creatine analog: cyclocreatine.
    Jacobstein MD; Gerken TA; Bhat AM; Carlier PG
    J Am Coll Cardiol; 1989 Jul; 14(1):246-51. PubMed ID: 2738267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Higher homolog and N-ethyl analog of creatine as synthetic phosphagen precursors in brain, heart, and muscle, repressors of liver amidinotransferase, and substrates for creatine catabolic enzymes.
    Roberts JJ; Walker JB
    J Biol Chem; 1985 Nov; 260(25):13502-8. PubMed ID: 4055745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creatine and cyclocreatine effects on ischemic myocardium: 31P nuclear magnetic resonance evaluation of intact heart.
    Osbakken M; Ito K; Zhang D; Ponomarenko I; Ivanics T; Jahngen EG; Cohn M
    Cardiology; 1992; 80(3-4):184-95. PubMed ID: 1511465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic response of skeletal muscle to ischemia.
    Harris K; Walker PM; Mickle DA; Harding R; Gatley R; Wilson GJ; Kuzon B; McKee N; Romaschin AD
    Am J Physiol; 1986 Feb; 250(2 Pt 2):H213-20. PubMed ID: 3946620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nourin-Associated miRNAs: Novel Inflammatory Monitoring Markers for Cyclocreatine Phosphate Therapy in Heart Failure.
    Elgebaly SA; Todd R; Kreutzer DL; Christenson R; El-Khazragy N; Arafa RK; Rabie MA; Mohamed AF; Ahmed LA; El Sayed NS
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33808213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical role of phosphagens in the energy cascade of cutaneous ischemia and protective action of phosphocreatine analogues in skin flap survival.
    Cuono CB; Marquetand R; Klein MB; Armitage I
    Plast Reconstr Surg; 1998 May; 101(6):1597-603. PubMed ID: 9583491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of tissue lactic acid and ATP levels on postischemic recovery in rabbit skeletal muscle.
    Hagberg H; Jennische E; Haljamäe H
    Circ Shock; 1985; 16(4):363-74. PubMed ID: 3836028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic responses in feline "red" and "white" skeletal muscle to shock and ischemia.
    Jennische E; Amundson B; Haljamäe H
    Acta Physiol Scand; 1979 May; 106(1):39-45. PubMed ID: 463577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclocreatine phosphate, an analogue of creatine phosphate, does not improve hypoxic tolerance in mice.
    Artru AA; Michenfelder JD
    J Neurochem; 1982 Oct; 39(4):1198-200. PubMed ID: 7119791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skeletal muscle phosphagen and lactate concentrations in ischaemic dynamic exercise.
    Ingemann-Hansen T; Halkjaer-Kristensen J; Halskov O
    Eur J Appl Physiol Occup Physiol; 1981; 46(3):261-70. PubMed ID: 7195807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporary incomplete ischemia of the legs induced by aortic clamping in man: effects on central hemodynamics and skeletal muscle metabolism by adrenergic block.
    Eklöf B; Neglén P; Thomson D
    Ann Surg; 1981 Jan; 193(1):89-98. PubMed ID: 7458455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP utilization and provision in fast-twitch skeletal muscle during tetanic contractions.
    Spriet LL
    Am J Physiol; 1989 Oct; 257(4 Pt 1):E595-605. PubMed ID: 2801938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical and ultrastructural changes in skeletal muscle induced by a creatine antagonist.
    Laskowski MB; Chevli R; Fitch CD
    Metabolism; 1981 Nov; 30(11):1080-5. PubMed ID: 7289881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy metabolism and adenine nucleotide degradation in twitch-stimulated rat hindlimb during ischemia-reperfusion.
    Welsh DG; Lindinger MI
    Am J Physiol; 1993 Apr; 264(4 Pt 1):E655-61. PubMed ID: 8476043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.