BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 3571272)

  • 21. Phosphorylated beta-guanidinopropionate as a substitute for phosphocreatine in rat muscle.
    Fitch CD; Jellinek M; Fitts RH; Baldwin KM; Holloszy JO
    Am J Physiol; 1975 Apr; 228(4):1123-5. PubMed ID: 1130513
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in ATP, phosphocreatine, and 16 metabolites in muscle stimulated for up to 96 hours.
    Salmons S; Jarvis JC; Mayne CN; Chi MM; Manchester JK; McDougal DB; Lowry OH
    Am J Physiol; 1996 Oct; 271(4 Pt 1):C1167-71. PubMed ID: 8897822
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Incomplete recovery of muscle cell function following partial but not complete ischemia.
    Roberts JP; Perry MO; Hariri RJ; Shires GT
    Circ Shock; 1985; 17(3):253-8. PubMed ID: 4075507
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of ischemia on skeletal muscle energy metabolism in mice lacking creatine kinase monitored by in vivo 31P nuclear magnetic resonance spectroscopy.
    in 't Zandt HJ; Oerlemans F; Wieringa B; Heerschap A
    NMR Biomed; 1999 Oct; 12(6):327-34. PubMed ID: 10516614
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphagen and intracellular pH changes during contraction of creatine-depleted rat muscle.
    Meyer RA; Brown TR; Krilowicz BL; Kushmerick MJ
    Am J Physiol; 1986 Feb; 250(2 Pt 1):C264-74. PubMed ID: 3953780
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temporary incomplete ischemia of the legs caused by aortic clamping in man: improvement of skeletal muscle metabolism by low molecular dextran.
    Eklöf B; Neglén P; Thomson D
    Ann Surg; 1981 Jan; 193(1):99-104. PubMed ID: 6161586
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anaerobic ATP provision, glycogenolysis and glycolysis in rat slow-twitch muscle during tetanic contractions.
    Spriet LL
    Pflugers Arch; 1990 Nov; 417(3):278-84. PubMed ID: 2148818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduction of skeletal muscle injury through stress conditioning using the heat-shock response.
    Garramone RR; Winters RM; Das DK; Deckers PJ
    Plast Reconstr Surg; 1994 May; 93(6):1242-7. PubMed ID: 8171144
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Free ADP levels in transgenic mouse liver expressing creatine kinase. Effects of enzyme activity, phosphagen type, and substrate concentration.
    Brosnan MJ; Chen L; Van Dyke TA; Koretsky AP
    J Biol Chem; 1990 Dec; 265(34):20849-55. PubMed ID: 2249991
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Restitution of the energy metabolism of rat skeletal muscles following long lasting ischemia].
    Stock W; Bohn HJ; Isselhard W
    Res Exp Med (Berl); 1973; 159(4):306-20. PubMed ID: 4686748
    [No Abstract]   [Full Text] [Related]  

  • 31. Anaerobic energy provision in aged skeletal muscle during tetanic stimulation.
    Campbell CB; Marsh DR; Spriet LL
    J Appl Physiol (1985); 1991 Apr; 70(4):1787-95. PubMed ID: 1829080
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cyclocreatine (1-carboxymethyl-2-iminoimidazolidine) inhibits growth of a broad spectrum of cancer cells derived from solid tumors.
    Lillie JW; O'Keefe M; Valinski H; Hamlin HA; Varban ML; Kaddurah-Daouk R
    Cancer Res; 1993 Jul; 53(13):3172-8. PubMed ID: 8319226
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Utilization of cyclocreatine phosphate, and analogue of creatine phosphate, by mouse brain during ischemia and its sparing action on brain energy reserves.
    Woznicki DT; Walker JB
    J Neurochem; 1980 May; 34(5):1247-53. PubMed ID: 7373304
    [No Abstract]   [Full Text] [Related]  

  • 34. Cyclocreatine phosphate as a substitute for creatine phosphate in vertebrate tissues. Energistic considerations.
    Annesley TM; Walker JB
    Biochem Biophys Res Commun; 1977 Jan; 74(1):185-90. PubMed ID: 836276
    [No Abstract]   [Full Text] [Related]  

  • 35. Effect of buflomedil on cell metabolism in ischemic muscle.
    Skau T; Aldman A; Lewis DH; Larsson J
    Int Angiol; 1988; 7(4):337-43. PubMed ID: 3243989
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ischemic tolerance of human skeletal muscle.
    Eckert P; Schnackerz K
    Ann Plast Surg; 1991 Jan; 26(1):77-84. PubMed ID: 1994817
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Energetics studies of muscles of different types.
    Kushmerick MJ
    Basic Res Cardiol; 1987; 82 Suppl 2():17-30. PubMed ID: 3663016
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo brain phosphocreatine and ATP regulation in mice fed a creatine analog.
    Holtzman D; Meyers R; O'Gorman E; Khait I; Wallimann T; Allred E; Jensen F
    Am J Physiol; 1997 May; 272(5 Pt 1):C1567-77. PubMed ID: 9176148
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human skeletal muscle energy metabolism during and after complete tourniquet ischemia.
    Haljamäe H; Enger E
    Ann Surg; 1975 Jul; 182(1):9-14. PubMed ID: 1147714
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intracellular pH during ischemia in skeletal muscle: relationship to membrane potential, extracellular pH, tissue lactic acid and ATP.
    Hagberg H
    Pflugers Arch; 1985 Aug; 404(4):342-7. PubMed ID: 4059028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.