These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 3571299)
1. A dynamic optimization technique for predicting muscle forces in the swing phase of gait. Davy DT; Audu ML J Biomech; 1987; 20(2):187-201. PubMed ID: 3571299 [TBL] [Abstract][Full Text] [Related]
2. Contributions to the understanding of gait control. Simonsen EB Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597 [TBL] [Abstract][Full Text] [Related]
3. Static and dynamic optimization solutions for gait are practically equivalent. Anderson FC; Pandy MG J Biomech; 2001 Feb; 34(2):153-61. PubMed ID: 11165278 [TBL] [Abstract][Full Text] [Related]
4. Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach. Heintz S; Gutierrez-Farewik EM Gait Posture; 2007 Jul; 26(2):279-88. PubMed ID: 17071088 [TBL] [Abstract][Full Text] [Related]
5. A fair and EMG-validated comparison of recruitment criteria, musculotendon models and muscle coordination strategies, for the inverse-dynamics based optimization of muscle forces during gait. Michaud F; Lamas M; Lugrís U; Cuadrado J J Neuroeng Rehabil; 2021 Jan; 18(1):17. PubMed ID: 33509205 [TBL] [Abstract][Full Text] [Related]
6. A procedure to estimate normal and friction contact parameters in the stance phase of the human gait. Ojeda J; Mayo J Comput Methods Biomech Biomed Engin; 2019 Jun; 22(8):840-852. PubMed ID: 30982324 [TBL] [Abstract][Full Text] [Related]
7. A physiology-based inverse dynamic analysis of human gait using sequential convex programming: a comparative study. De Groote F; Demeulenaere B; Swevers J; De Schutter J; Jonkers I Comput Methods Biomech Biomed Engin; 2012; 15(10):1093-102. PubMed ID: 21878002 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous prediction of muscle and contact forces in the knee during gait. Lin YC; Walter JP; Banks SA; Pandy MG; Fregly BJ J Biomech; 2010 Mar; 43(5):945-52. PubMed ID: 19962703 [TBL] [Abstract][Full Text] [Related]
9. A computational framework for simultaneous estimation of muscle and joint contact forces and body motion using optimization and surrogate modeling. Eskinazi I; Fregly BJ Med Eng Phys; 2018 Apr; 54():56-64. PubMed ID: 29487037 [TBL] [Abstract][Full Text] [Related]
10. Estimation of muscle forces in gait using a simulation of the electromyographic activity and numerical optimization. Ravera EP; Crespo MJ; Braidot AA Comput Methods Biomech Biomed Engin; 2016; 19(1):1-12. PubMed ID: 25408069 [TBL] [Abstract][Full Text] [Related]
11. Which data should be tracked in forward-dynamic optimisation to best predict muscle forces in a pathological co-contraction case? Bélaise C; Michaud B; Dal Maso F; Mombaur K; Begon M J Biomech; 2018 Feb; 68():99-106. PubMed ID: 29325902 [TBL] [Abstract][Full Text] [Related]
12. Effects of mass and momentum of inertia alternation on individual muscle forces during swing phase of transtibial amputee gait. Dabiri Y; Najarian S; Eslami MR; Zahedi S; Moser D; Shirzad E; Allami M Kobe J Med Sci; 2010 Sep; 56(3):E92-7. PubMed ID: 21063155 [TBL] [Abstract][Full Text] [Related]
13. Comparison of global and joint-to-joint methods for estimating the hip joint load and the muscle forces during walking. Fraysse F; Dumas R; Cheze L; Wang X J Biomech; 2009 Oct; 42(14):2357-62. PubMed ID: 19699479 [TBL] [Abstract][Full Text] [Related]
14. Bilevel Optimization for Cost Function Determination in Dynamic Simulation of Human Gait. Nguyen VQ; Johnson RT; Sup FC; Umberger BR IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1426-1435. PubMed ID: 31199264 [TBL] [Abstract][Full Text] [Related]
15. Optimization-based prediction of asymmetric human gait. Xiang Y; Arora JS; Abdel-Malek K J Biomech; 2011 Feb; 44(4):683-93. PubMed ID: 21092968 [TBL] [Abstract][Full Text] [Related]
16. Potential of the pseudo-inverse method as a constrained static optimization for musculo-tendon forces prediction. Moissenet F; Chèze L; Dumas R J Biomech Eng; 2012 Jun; 134(6):064503. PubMed ID: 22757507 [TBL] [Abstract][Full Text] [Related]
17. The effect of perturbing body segment parameters on calculated joint moments and muscle forces during gait. Wesseling M; de Groote F; Jonkers I J Biomech; 2014 Jan; 47(2):596-601. PubMed ID: 24332615 [TBL] [Abstract][Full Text] [Related]
18. Effect of body weight support variation on muscle activities during robot assisted gait: a dynamic simulation study. Hussain S; Jamwal PK; Ghayesh MH Comput Methods Biomech Biomed Engin; 2017 May; 20(6):626-635. PubMed ID: 28349768 [TBL] [Abstract][Full Text] [Related]
19. Modeling initial contact dynamics during ambulation with dynamic simulation. Meyer AR; Wang M; Smith PA; Harris GF Med Biol Eng Comput; 2007 Apr; 45(4):387-94. PubMed ID: 17268804 [TBL] [Abstract][Full Text] [Related]
20. Optimal estimation of dynamically consistent kinematics and kinetics for forward dynamic simulation of gait. Remy CD; Thelen DG J Biomech Eng; 2009 Mar; 131(3):031005. PubMed ID: 19154064 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]