These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 35713142)
1. Wang X; Li R; Liu T; Jia Y; Gao X; Zhang X Endocr Metab Immune Disord Drug Targets; 2023; 23(3):294-303. PubMed ID: 35713142 [TBL] [Abstract][Full Text] [Related]
2. Identifying C1QB, ITGAM, and ITGB2 as potential diagnostic candidate genes for diabetic nephropathy using bioinformatics analysis. Hu Y; Yu Y; Dong H; Jiang W PeerJ; 2023; 11():e15437. PubMed ID: 37250717 [TBL] [Abstract][Full Text] [Related]
3. Identification of mitochondria-related genes as diagnostic biomarkers for diabetic nephropathy and their correlation with immune infiltration: New insights from bioinformatics analysis. Yan Q; Du Y; Huang F; Zhang Q; Zhan M; Wu J; Yan J; Zhang P; Lin H; Han L; Huang X Int Immunopharmacol; 2024 Dec; 142(Pt A):113114. PubMed ID: 39265357 [TBL] [Abstract][Full Text] [Related]
4. Identification of key immune-related genes and immune infiltration in diabetic nephropathy based on machine learning algorithms. Sun Y; Dai W; He W IET Syst Biol; 2023 Jun; 17(3):95-106. PubMed ID: 36919187 [TBL] [Abstract][Full Text] [Related]
5. Screening of the Key Genes and Signalling Pathways for Diabetic Nephropathy Using Bioinformatics Analysis. Li Z; Feng J; Zhong J; Lu M; Gao X; Zhang Y Front Endocrinol (Lausanne); 2022; 13():864407. PubMed ID: 35923621 [TBL] [Abstract][Full Text] [Related]
6. Identification of a novel immune landscape signature as effective diagnostic markers related to immune cell infiltration in diabetic nephropathy. Zhou H; Mu L; Yang Z; Shi Y Front Immunol; 2023; 14():1113212. PubMed ID: 36969169 [TBL] [Abstract][Full Text] [Related]
7. Investigation of the Mechanism of Complement System in Diabetic Nephropathy via Bioinformatics Analysis. Xu B; Wang L; Zhan H; Zhao L; Wang Y; Shen M; Xu K; Li L; Luo X; Zhou S; Tang A; Liu G; Song L; Li Y J Diabetes Res; 2021; 2021():5546199. PubMed ID: 34124269 [TBL] [Abstract][Full Text] [Related]
8. Identification of Lipotoxicity-Related Biomarkers in Diabetic Nephropathy Based on Bioinformatic Analysis. Nie H; Yang H; Cheng L; Yu J J Diabetes Res; 2024; 2024():5550812. PubMed ID: 38774257 [No Abstract] [Full Text] [Related]
9. VCAM1: an effective diagnostic marker related to immune cell infiltration in diabetic nephropathy. Deng Y; Zhang S; Luo Z; He P; Ma X; Ma Y; Wang J; Zheng L; Tian N; Dong S; Zhang X; Zhang M Front Endocrinol (Lausanne); 2024; 15():1426913. PubMed ID: 39319258 [TBL] [Abstract][Full Text] [Related]
10. Bioinformatics led discovery of biomarkers related to immune infiltration in diabetes nephropathy. Wang S; Chen S; Gao Y; Zhou H Medicine (Baltimore); 2023 Sep; 102(35):e34992. PubMed ID: 37656997 [TBL] [Abstract][Full Text] [Related]
11. The landscape of immune cell infiltration in the glomerulus of diabetic nephropathy: evidence based on bioinformatics. Zhou W; Liu Y; Hu Q; Zhou J; Lin H BMC Nephrol; 2022 Sep; 23(1):303. PubMed ID: 36064366 [TBL] [Abstract][Full Text] [Related]
12. Identification of immune-associated biomarkers of diabetes nephropathy tubulointerstitial injury based on machine learning: a bioinformatics multi-chip integrated analysis. Wang L; Su J; Liu Z; Ding S; Li Y; Hou B; Hu Y; Dong Z; Tang J; Liu H; Liu W BioData Min; 2024 Jul; 17(1):20. PubMed ID: 38951833 [TBL] [Abstract][Full Text] [Related]
13. Identification of endoplasmic reticulum stress-related biomarkers of diabetes nephropathy based on bioinformatics and machine learning. Su J; Peng J; Wang L; Xie H; Zhou Y; Chen H; Shi Y; Guo Y; Zheng Y; Guo Y; Dong Z; Zhang X; Liu H Front Endocrinol (Lausanne); 2023; 14():1206154. PubMed ID: 37745718 [TBL] [Abstract][Full Text] [Related]
14. Machine learning-based metabolism-related genes signature and immune infiltration landscape in diabetic nephropathy. Zhang H; Hu J; Zhu J; Li Q; Fang L Front Endocrinol (Lausanne); 2022; 13():1026938. PubMed ID: 36482994 [TBL] [Abstract][Full Text] [Related]
15. Integrative analyses of biomarkers and pathways for diabetic nephropathy. Li B; Zhao X; Xie W; Hong Z; Zhang Y Front Genet; 2023; 14():1128136. PubMed ID: 37113991 [No Abstract] [Full Text] [Related]
16. Seven basement membrane-specific expressed genes are considered potential biomarkers for the diagnosis and treatment of diabetic nephropathy. Gui H; Chen X; Ye L; Ma H Acta Diabetol; 2023 Apr; 60(4):493-505. PubMed ID: 36627452 [TBL] [Abstract][Full Text] [Related]
17. Identification of tubulointerstitial genes and ceRNA networks involved in diabetic nephropathy via integrated bioinformatics approaches. Cao H; Rao X; Jia J; Yan T; Li D Hereditas; 2022 Sep; 159(1):36. PubMed ID: 36154667 [TBL] [Abstract][Full Text] [Related]
18. Bioinformatics analysis identifies diagnostic biomarkers and their correlation with immune infiltration in diabetic nephropathy. Huang M; Zhu Z; Nong C; Liang Z; Ma J; Li G Ann Transl Med; 2022 Jun; 10(12):669. PubMed ID: 35845512 [TBL] [Abstract][Full Text] [Related]
19. Integrated Bioinformatics and Clinical Correlation Analysis of Key Genes, Pathways, and Potential Therapeutic Agents Related to Diabetic Nephropathy. Chen S; Chen L; Jiang H Dis Markers; 2022; 2022():9204201. PubMed ID: 35637650 [TBL] [Abstract][Full Text] [Related]
20. Identification of copper-related biomarkers and potential molecule mechanism in diabetic nephropathy. Ming J; Sana SRGL; Deng X Front Endocrinol (Lausanne); 2022; 13():978601. PubMed ID: 36329882 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]