BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 35713246)

  • 1. Advances in Translational 3D Printing for Cartilage, Bone, and Osteochondral Tissue Engineering.
    Wang S; Zhao S; Yu J; Gu Z; Zhang Y
    Small; 2022 Sep; 18(36):e2201869. PubMed ID: 35713246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in 3D printing of composite scaffolds for the repairment of bone tissue associated defects.
    Anandhapadman A; Venkateswaran A; Jayaraman H; Veerabadran Ghone N
    Biotechnol Prog; 2022 May; 38(3):e3234. PubMed ID: 35037419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D-printed biomimetic scaffolds with precisely controlled and tunable structures guide cell migration and promote regeneration of osteochondral defect.
    Gu Y; Zou Y; Huang Y; Liang R; Wu Y; Hu Y; Hong Y; Zhang X; Toh YC; Ouyang H; Zhang S
    Biofabrication; 2023 Oct; 16(1):. PubMed ID: 37797606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Bioprinting for Cartilage and Osteochondral Tissue Engineering.
    Daly AC; Freeman FE; Gonzalez-Fernandez T; Critchley SE; Nulty J; Kelly DJ
    Adv Healthc Mater; 2017 Nov; 6(22):. PubMed ID: 28804984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-β1 for osteochondral tissue regeneration.
    Wang C; Yue H; Huang W; Lin X; Xie X; He Z; He X; Liu S; Bai L; Lu B; Wei Y; Wang M
    Biofabrication; 2020 Mar; 12(2):025030. PubMed ID: 32106097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three Dimensional Printing-Based Strategies for Functional Cartilage Regeneration.
    Shen S; Chen M; Guo W; Li H; Li X; Huang S; Luo X; Wang Z; Wen Y; Yuan Z; Zhang B; Peng L; Gao C; Guo Q; Liu S; Zhuo N
    Tissue Eng Part B Rev; 2019 Jun; 25(3):187-201. PubMed ID: 30608012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-printed biphasic scaffolds for the simultaneous regeneration of osteochondral tissues.
    Natarajan ABM; Sivadas VPD; Nair PDPD
    Biomed Mater; 2021 Jul; 16(5):. PubMed ID: 34265754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects.
    Critchley S; Sheehy EJ; Cunniffe G; Diaz-Payno P; Carroll SF; Jeon O; Alsberg E; Brama PAJ; Kelly DJ
    Acta Biomater; 2020 Sep; 113():130-143. PubMed ID: 32505800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy.
    Ma H; Feng C; Chang J; Wu C
    Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Personalized 3D printed bone scaffolds: A review.
    Mirkhalaf M; Men Y; Wang R; No Y; Zreiqat H
    Acta Biomater; 2023 Jan; 156():110-124. PubMed ID: 35429670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Digital light processing (DLP) in tissue engineering: from promise to reality, and perspectives.
    Gong J; Qian Y; Lu K; Zhu Z; Siow L; Zhang C; Zhou S; Gu T; Yin J; Yu M; Wang H; Yang H
    Biomed Mater; 2022 Oct; 17(6):. PubMed ID: 36179679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Printing and Biofabrication for Load Bearing Tissue Engineering.
    Jeong CG; Atala A
    Adv Exp Med Biol; 2015; 881():3-14. PubMed ID: 26545741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic Approaches for the Design and Fabrication of Bone-to-Soft Tissue Interfaces.
    Pitta Kruize C; Panahkhahi S; Putra NE; Diaz-Payno P; van Osch G; Zadpoor AA; Mirzaali MJ
    ACS Biomater Sci Eng; 2023 Jul; 9(7):3810-3831. PubMed ID: 34784181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in 3D Printing of Highly Bioadaptive Bone Tissue Engineering Scaffolds.
    Ren Y; Zhang C; Liu Y; Kong W; Yang X; Niu H; Qiang L; Yang H; Yang F; Wang C; Wang J
    ACS Biomater Sci Eng; 2024 Jan; 10(1):255-270. PubMed ID: 38118130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review.
    Marques CF; Diogo GS; Pina S; Oliveira JM; Silva TH; Reis RL
    J Mater Sci Mater Med; 2019 Mar; 30(3):32. PubMed ID: 30840132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is 3D Printing Promising for Osteochondral Tissue Regeneration?
    Ege D; Hasirci V
    ACS Appl Bio Mater; 2023 Apr; 6(4):1431-1444. PubMed ID: 36943415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic Materials for Osteochondral Tissue Engineering.
    Iulian A; Dan L; Camelia T; Claudia M; Sebastian G
    Adv Exp Med Biol; 2018; 1058():31-52. PubMed ID: 29691816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Powder-based 3D printing for bone tissue engineering.
    Brunello G; Sivolella S; Meneghello R; Ferroni L; Gardin C; Piattelli A; Zavan B; Bressan E
    Biotechnol Adv; 2016; 34(5):740-753. PubMed ID: 27086202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-printed scaffolds with calcified layer for osteochondral tissue engineering.
    Li Z; Jia S; Xiong Z; Long Q; Yan S; Hao F; Liu J; Yuan Z
    J Biosci Bioeng; 2018 Sep; 126(3):389-396. PubMed ID: 29685821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current advancements in bio-ink technology for cartilage and bone tissue engineering.
    Badhe RV; Chatterjee A; Bijukumar D; Mathew MT
    Bone; 2023 Jun; 171():116746. PubMed ID: 36965655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.