BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35713356)

  • 21. MicroRNA Zma-miR528 Versatile Regulation on Target mRNAs during Maize Somatic Embryogenesis.
    Luján-Soto E; Juárez-González VT; Reyes JL; Dinkova TD
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34069987
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Seed-specific expression of the wheat puroindoline genes improves maize wet milling yields.
    Zhang J; Martin JM; Beecher B; Morris CF; Curtis Hannah L; Giroux MJ
    Plant Biotechnol J; 2009 Oct; 7(8):733-43. PubMed ID: 19702647
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize.
    Xing H; Pudake RN; Guo G; Xing G; Hu Z; Zhang Y; Sun Q; Ni Z
    BMC Genomics; 2011 Apr; 12():178. PubMed ID: 21473768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-wide identification of NF-Y gene family in maize (
    Cao L; Ma C; Ye F; Pang Y; Wang G; Fahim AM; Lu X
    Front Plant Sci; 2023; 14():1159955. PubMed ID: 37265635
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The ZmNF-YC1-ZmAPRG pathway modulates low phosphorus tolerance in maize.
    Bai Y; Yang Q; Gan Y; Li M; Zhao Z; Dong E; Li C; He D; Mei X; Cai Y
    J Exp Bot; 2024 May; 75(10):2867-2881. PubMed ID: 38393826
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ZmmiR169q/ZmNF-YA8 is a module that homeostatically regulates primary root growth and salt tolerance in maize.
    Xing L; Zhang L; Zheng H; Zhang Z; Luo Y; Liu Y; Wang L
    Front Plant Sci; 2023; 14():1163228. PubMed ID: 37457348
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ZmDRR206 Regulates Nutrient Accumulation in Endosperm through Its Role in Cell Wall Biogenesis during Maize Kernel Development.
    Li Y; Li D; E L; Yang J; Liu W; Xu M; Ye J
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240079
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Wang B; Li Z; Ran Q; Li P; Peng Z; Zhang J
    Front Plant Sci; 2018; 9():709. PubMed ID: 29896208
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of phytohormone and transcriptome reprogramming profiles during maize early kernel development.
    Ma C; Li B; Wang L; Xu ML; Lizhu E; Jin H; Wang Z; Ye JR
    BMC Plant Biol; 2019 May; 19(1):197. PubMed ID: 31088353
    [TBL] [Abstract][Full Text] [Related]  

  • 30. miR1432-OsACOT (Acyl-CoA thioesterase) module determines grain yield via enhancing grain filling rate in rice.
    Zhao YF; Peng T; Sun HZ; Teotia S; Wen HL; Du YX; Zhang J; Li JZ; Tang GL; Xue HW; Zhao QZ
    Plant Biotechnol J; 2019 Apr; 17(4):712-723. PubMed ID: 30183128
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MicroRNA (miRNA) profiling of maize genotypes with differential response to Aspergillus flavus implies zma-miR156-squamosa promoter binding protein (SBP) and zma-miR398/zma-miR394-F -box combinations involved in resistance mechanisms.
    Gandham P; Rajasekaran K; Sickler C; Mohan H; Gilbert M; Baisakh N
    Stress Biol; 2024 May; 4(1):26. PubMed ID: 38727957
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heterologous expression of ZmGS5 enhances organ size and seed weight by regulating cell expansion in Arabidopsis thaliana.
    Wang J; Zhang M; Dong R; Liu C; Guan H; Liu Q; Liu T; Wang L; Qi S; He C
    Gene; 2021 Aug; 793():145749. PubMed ID: 34077776
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-Wide Identification and Characterization of microRNAs in Developing Grains of Zea mays L.
    Li D; Liu Z; Gao L; Wang L; Gao M; Jiao Z; Qiao H; Yang J; Chen M; Yao L; Liu R; Kan Y
    PLoS One; 2016; 11(4):e0153168. PubMed ID: 27082634
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hormonal responses during early embryogenesis in maize.
    Chen J; Lausser A; Dresselhaus T
    Biochem Soc Trans; 2014 Apr; 42(2):325-31. PubMed ID: 24646239
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of PIN auxin efflux carriers in polar auxin transport and accumulation and their effect on shaping maize development.
    Forestan C; Varotto S
    Mol Plant; 2012 Jul; 5(4):787-98. PubMed ID: 22186966
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies of aberrant phyllotaxy1 mutants of maize indicate complex interactions between auxin and cytokinin signaling in the shoot apical meristem.
    Lee BH; Johnston R; Yang Y; Gallavotti A; Kojima M; Travençolo BA; Costa Lda F; Sakakibara H; Jackson D
    Plant Physiol; 2009 May; 150(1):205-16. PubMed ID: 19321707
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptomic Variations and Network Hubs Controlling Seed Size and Weight During Maize Seed Development.
    Wang Y; Nie L; Ma J; Zhou B; Han X; Cheng J; Lu X; Fan Z; Li Y; Cao Y
    Front Plant Sci; 2022; 13():828923. PubMed ID: 35237291
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The miR164-dependent regulatory pathway in developing maize seed.
    Zheng L; Zhang X; Zhang H; Gu Y; Huang X; Huang H; Liu H; Zhang J; Hu Y; Li Y; Yu G; Liu Y; Lawson SS; Huang Y
    Mol Genet Genomics; 2019 Apr; 294(2):501-517. PubMed ID: 30607602
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ZmDof3, a maize endosperm-specific Dof protein gene, regulates starch accumulation and aleurone development in maize endosperm.
    Qi X; Li S; Zhu Y; Zhao Q; Zhu D; Yu J
    Plant Mol Biol; 2017 Jan; 93(1-2):7-20. PubMed ID: 27709320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptional regulatory networks in response to drought stress and rewatering in maize (Zea mays L.).
    Cao L; Lu X; Wang G; Zhang P; Fu J; Wang Z; Wei L; Wang T
    Mol Genet Genomics; 2021 Nov; 296(6):1203-1219. PubMed ID: 34601650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.