These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 35713415)

  • 1. Accessing Diverse Pyridine-Based Macrocyclic Peptides by a Two-Site Recognition Pathway.
    Nguyen DT; Le TT; Rice AJ; Hudson GA; van der Donk WA; Mitchell DA
    J Am Chem Soc; 2022 Jun; 144(25):11263-11269. PubMed ID: 35713415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure Prediction and Synthesis of Pyridine-Based Macrocyclic Peptide Natural Products.
    Hudson GA; Hooper AR; DiCaprio AJ; Sarlah D; Mitchell DA
    Org Lett; 2021 Jan; 23(2):253-256. PubMed ID: 32845158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired Total Synthesis of Pyritide A2 through Pyridine Ring Synthesis.
    Hooper AR; Oštrek A; Milian-Lopez A; Sarlah D
    Angew Chem Int Ed Engl; 2022 Nov; 61(46):e202212299. PubMed ID: 36123301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribosomally synthesized and post-translationally modified peptide natural products: new insights into the role of leader and core peptides during biosynthesis.
    Yang X; van der Donk WA
    Chemistry; 2013 Jun; 19(24):7662-77. PubMed ID: 23666908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles.
    Cox CL; Doroghazi JR; Mitchell DA
    BMC Genomics; 2015 Oct; 16():778. PubMed ID: 26462797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Insights into the Biosynthetic Logic of Ribosomally Synthesized and Post-translationally Modified Peptide Natural Products.
    Ortega MA; van der Donk WA
    Cell Chem Biol; 2016 Jan; 23(1):31-44. PubMed ID: 26933734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic Pyridine Aromatization during Thiopeptide Biosynthesis.
    Rice AJ; Pelton JM; Kramer NJ; Catlin DS; Nair SK; Pogorelov TV; Mitchell DA; Bowers AA
    J Am Chem Soc; 2022 Nov; 144(46):21116-21124. PubMed ID: 36351243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The RaPID Platform for the Discovery of Pseudo-Natural Macrocyclic Peptides.
    Goto Y; Suga H
    Acc Chem Res; 2021 Sep; 54(18):3604-3617. PubMed ID: 34505781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A prevalent peptide-binding domain guides ribosomal natural product biosynthesis.
    Burkhart BJ; Hudson GA; Dunbar KL; Mitchell DA
    Nat Chem Biol; 2015 Aug; 11(8):564-70. PubMed ID: 26167873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate Recognition by the Class II Lanthipeptide Synthetase HalM2.
    Rahman IR; Acedo JZ; Liu XR; Zhu L; Arrington J; Gross ML; van der Donk WA
    ACS Chem Biol; 2020 Jun; 15(6):1473-1486. PubMed ID: 32293871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three Principles of Diversity-Generating Biosynthesis.
    Gu W; Schmidt EW
    Acc Chem Res; 2017 Oct; 50(10):2569-2576. PubMed ID: 28891639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steric complementarity directs sequence promiscuous leader binding in RiPP biosynthesis.
    Chekan JR; Ongpipattanakul C; Nair SK
    Proc Natl Acad Sci U S A; 2019 Nov; 116(48):24049-24055. PubMed ID: 31719203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in the biosynthesis of ribosomally synthesized and posttranslationally modified peptides of fungal origin.
    Ozaki T; Minami A; Oikawa H
    J Antibiot (Tokyo); 2023 Jan; 76(1):3-13. PubMed ID: 36424516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micrococcin cysteine-to-thiazole conversion through transient interactions between the scaffolding protein TclI and the modification enzymes TclJ and TclN.
    Calvopina-Chavez DG; Bursey DM; Tseng Y-J; Patil LM; Bewley KD; Bennallack PR; McPhie JM; Wagstaff KB; Daley A; Miller SM; Moody JD; Price JC; Griffitts JS
    Appl Environ Microbiol; 2024 Jun; 90(6):e0024424. PubMed ID: 38780510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of novel fungal RiPP biosynthetic pathways and their application for the development of peptide therapeutics.
    Vogt E; Künzler M
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5567-5581. PubMed ID: 31147756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. P450-Modified Multicyclic Cyclophane-Containing Ribosomally Synthesized and Post-Translationally Modified Peptides.
    Liu CL; Wang ZJ; Shi J; Yan ZY; Zhang GD; Jiao RH; Tan RX; Ge HM
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202314046. PubMed ID: 38072825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein Engineering in Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs).
    Do T; Link AJ
    Biochemistry; 2023 Jan; 62(2):201-209. PubMed ID: 35006671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disordered regions in proteusin peptides guide post-translational modification by a flavin-dependent RiPP brominase.
    Nguyen NA; Vidya FNU; Yennawar NH; Wu H; McShan AC; Agarwal V
    Nat Commun; 2024 Feb; 15(1):1265. PubMed ID: 38341413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A ribosomally synthesised and post-translationally modified peptide containing a β-enamino acid and a macrocyclic motif.
    Wang S; Lin S; Fang Q; Gyampoh R; Lu Z; Gao Y; Clarke DJ; Wu K; Trembleau L; Yu Y; Kyeremeh K; Milne BF; Tabudravu J; Deng H
    Nat Commun; 2022 Aug; 13(1):5044. PubMed ID: 36028509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in the Discovery and Biosynthetic Study of Eukaryotic RiPP Natural Products.
    Luo S; Dong SH
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31003555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.