These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35713650)

  • 41. Immediate effects of the semi-occluded vocal tract exercise with LaxVox® tube in singers.
    Fadel CB; Dassie-Leite AP; Santos RS; Santos CG; Dias CA; Sartori DJ
    Codas; 2016 9-10; 28(5):618-624. PubMed ID: 27849247
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Do Flexible Silicone Tubes Immersed in Water Combined With Vocalise Improve the Immediate Effect on Voice?
    Cardoso NSV; Lucena JA; de Lira ZS; de Vasconcelos SJ; Lopes LW; Gomes AOC
    J Speech Lang Hear Res; 2021 Dec; 64(12):4535-4562. PubMed ID: 34762812
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Immediate Effects of Semi-Occluded Vocal Tract Exercises on Acoustic, Auditory-Perceptual, and Self-Perceptual Measures of Voice Production.
    Ford DS; Hunter EJ; Deliyski DD
    Folia Phoniatr Logop; 2024; 76(5):467-481. PubMed ID: 38160667
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Indexing Cognitive Resource Usage for Acquisition of Initial Voice Therapy Targets.
    Vinney LA; Tripp R; Shelly S; Gillespie A
    Am J Speech Lang Pathol; 2023 Mar; 32(2):717-732. PubMed ID: 36701805
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Immediate Effects of Straw Phonation in Water Exercises on Parameters of Vocal Loading in Carnatic Classical Singers.
    Devadas U; Vinod D; Maruthy S
    J Voice; 2023 Jan; 37(1):142.e13-142.e22. PubMed ID: 33288381
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Singer and listener perception of vocal warm-up.
    Moorcroft L; Kenny DT
    J Voice; 2013 Mar; 27(2):258.e1-258.e13. PubMed ID: 23415147
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantifying Subjective and Objective Measures of Singing After Different Warm-Up Durations.
    Ragsdale FW; Marchman JO; Bretl MM; Diaz J; Rosow DE; Anis M; Zhang H; Landera MA; Lloyd AT
    J Voice; 2022 Sep; 36(5):661-667. PubMed ID: 32891479
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Translation and cross-cultural adaptation of the Brazilian version of the Adapted Borg CR10 for Vocal Effort Ratings.
    Camargo MRMC; Zambon F; Moreti F; Behlau M
    Codas; 2019; 31(5):e20180112. PubMed ID: 31691744
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Effects of Reading Speed on Acoustic Voice Parameters and Self-reported Vocal Fatigue in Students.
    Nudelman C; Webster J; Bottalico P
    J Voice; 2024 Jan; 38(1):243.e1-243.e10. PubMed ID: 34272142
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Immediate Effect of Semioccluded Vocal Tract Exercises Using Resonance Tube Phonation in Water on Women Without Vocal Complaints.
    Bonette MC; Ribeiro VV; Xavier-Fadel CB; Costa CDC; Dassie-Leite AP
    J Voice; 2020 Nov; 34(6):962.e19-962.e25. PubMed ID: 31402081
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Vocal warm-up practices and perceptions in vocalists: a pilot survey.
    Gish A; Kunduk M; Sims L; McWhorter AJ
    J Voice; 2012 Jan; 26(1):e1-e10. PubMed ID: 21439780
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The relationship between acoustical and perceptual measures of vocal effort.
    McKenna VS; Stepp CE
    J Acoust Soc Am; 2018 Sep; 144(3):1643. PubMed ID: 30424674
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Remote Voice Therapy With an Oscillatory Positive Expiratory Pressure Device in Subjects With Vocal Fatigue: A Randomized Controlled Trial.
    Acevedo K; Guzman M; Ortega A; Aguirre C; Diaz S; Escudero J; Quezada C
    J Speech Lang Hear Res; 2023 Dec; 66(12):4801-4811. PubMed ID: 37971520
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects on vocal fold collision and phonation threshold pressure of resonance tube phonation with tube end in water.
    Enflo L; Sundberg J; Romedahl C; McAllister A
    J Speech Lang Hear Res; 2013 Oct; 56(5):1530-8. PubMed ID: 23838993
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Direct measurement of pressures involved in vocal exercises using semi-occluded vocal tracts.
    Robieux C; Galant C; Lagier A; Legou T; Giovanni A
    Logoped Phoniatr Vocol; 2015 Oct; 40(3):106-12. PubMed ID: 24850270
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Computerized Tomography Measures During and After Artificial Lengthening of the Vocal Tract in Subjects With Voice Disorders.
    Guzman M; Miranda G; Olavarria C; Madrid S; Muñoz D; Leiva M; Lopez L; Bortnem C
    J Voice; 2017 Jan; 31(1):124.e1-124.e10. PubMed ID: 26852823
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Vocal Control: Is It Susceptible to the Negative Effects of Self-Regulatory Depletion?
    Vinney LA; van Mersbergen M; Connor NP; Turkstra LS
    J Voice; 2016 Sep; 30(5):638.e21-31. PubMed ID: 26804788
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An Exact Analytical Model for the Relationship Between Flow Resistance and Geometric Properties of Tubes Used in Semi-occluded Vocal Tract Exercises.
    da Silva AR; Ghirardi AC; Reiser MR; Paul S
    J Voice; 2019 Sep; 33(5):585-590. PubMed ID: 29861290
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Vocal resistance among choir singers.
    Onofre F; Ricz H; de Almeida Prado Y; Rojas GVE; Garcia DM; Aguiar-Ricz L
    Eur Arch Otorhinolaryngol; 2021 Jan; 278(1):159-165. PubMed ID: 32754870
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Vocal function exercises for presbylaryngis: a multidimensional assessment of treatment outcomes.
    Sauder C; Roy N; Tanner K; Houtz DR; Smith ME
    Ann Otol Rhinol Laryngol; 2010 Jul; 119(7):460-7. PubMed ID: 20734967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.