These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 35713697)

  • 1. Heat stress in Africa under high intensity climate change.
    Parkes B; Buzan JR; Huber M
    Int J Biometeorol; 2022 Aug; 66(8):1531-1545. PubMed ID: 35713697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A unifying model to estimate the effect of heat stress in the human innate immunity during physical activities.
    Presbitero A; Melnikov VR; Krzhizhanovskaya VV; Sloot PMA
    Sci Rep; 2021 Aug; 11(1):16688. PubMed ID: 34404876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of the thermoelectric cooling system in making a cooling belt: A case of heat stress control measure device.
    Samani AS; Ghavamabadi LI; Dehaghi BF
    Work; 2024; 78(3):797-805. PubMed ID: 38277330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Air-quality-related health impacts from climate change and from adaptation of cooling demand for buildings in the eastern United States: An interdisciplinary modeling study.
    Abel DW; Holloway T; Harkey M; Meier P; Ahl D; Limaye VS; Patz JA
    PLoS Med; 2018 Jul; 15(7):e1002599. PubMed ID: 29969461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Residential air-conditioning and climate change: voices of the vulnerable.
    Farbotko C; Waitt G
    Health Promot J Austr; 2011 Dec; 22(4):13-15. PubMed ID: 22518913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing importance of heat stress for cattle farming under future global climate scenarios.
    Carvajal MA; Alaniz AJ; Gutiérrez-Gómez C; Vergara PM; Sejian V; Bozinovic F
    Sci Total Environ; 2021 Dec; 801():149661. PubMed ID: 34467908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review: Adaptation of ruminant livestock production systems to climate changes.
    Henry BK; Eckard RJ; Beauchemin KA
    Animal; 2018 Dec; 12(s2):s445-s456. PubMed ID: 30092851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limited heat tolerance in a cold-adapted seabird: implications of a warming Arctic.
    Choy ES; O'Connor RS; Gilchrist HG; Hargreaves AL; Love OP; Vézina F; Elliott KH
    J Exp Biol; 2021 Jul; 224(13):. PubMed ID: 34232314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increases in extreme heat stress in domesticated livestock species during the twenty-first century.
    Thornton P; Nelson G; Mayberry D; Herrero M
    Glob Chang Biol; 2021 Nov; 27(22):5762-5772. PubMed ID: 34410027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate change and occupational heat stress risks and adaptation strategies of mining workers: Perspectives of supervisors and other stakeholders in Ghana.
    Nunfam VF; Van Etten EJ; Oosthuizen J; Adusei-Asante K; Frimpong K
    Environ Res; 2019 Feb; 169():147-155. PubMed ID: 30458350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current and Potential Future Seasonal Trends of Indoor Dwelling Temperature and Likely Health Risks in Rural Southern Africa.
    Kapwata T; Gebreslasie MT; Mathee A; Wright CY
    Int J Environ Res Public Health; 2018 May; 15(5):. PubMed ID: 29755105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards decarbonisation targets by changing setpoint temperature to avoid building overcooling and implementing district cooling in (sub)tropical high-density cities - A case study of Hong Kong.
    Kwok YT; Schoetter R; Ng E
    Sci Total Environ; 2022 Mar; 811():152338. PubMed ID: 34921887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting climate-change induced heat-related illness risk in Grand Canyon National Park visitors.
    Buttke DE; Raynor B; Schuurman GW
    PLoS One; 2023; 18(8):e0288812. PubMed ID: 37556450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impacts of heat stress on global cattle production during the 21st century: a modelling study.
    Thornton P; Nelson G; Mayberry D; Herrero M
    Lancet Planet Health; 2022 Mar; 6(3):e192-e201. PubMed ID: 35278386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous climate change impacts on electricity demand in world cities circa mid-century.
    Romitti Y; Sue Wing I
    Sci Rep; 2022 Mar; 12(1):4280. PubMed ID: 35277550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A methodology for mapping current and future heat stress risk in pigs.
    Mutua JY; Marshall K; Paul BK; Notenbaert AMO
    Animal; 2020 Sep; 14(9):1952-1960. PubMed ID: 32349852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecosystem services and urban heat riskscape moderation: water, green spaces, and social inequality in Phoenix, USA.
    Jenerette GD; Harlan SL; Stefanov WL; Martin CA
    Ecol Appl; 2011 Oct; 21(7):2637-51. PubMed ID: 22073649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Greatly enhanced risk to humans as a consequence of empirically determined lower moist heat stress tolerance.
    Vecellio DJ; Kong Q; Kenney WL; Huber M
    Proc Natl Acad Sci U S A; 2023 Oct; 120(42):e2305427120. PubMed ID: 37812703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Projection of future temperature extremes, related mortality, and adaptation due to climate and population changes in Taiwan.
    Chen CC; Wang YR; Wang YC; Lin SL; Chen CT; Lu MM; Guo YL
    Sci Total Environ; 2021 Mar; 760():143373. PubMed ID: 33172628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extending the potential of evaporative cooling for heat-stress relief.
    Berman A
    J Dairy Sci; 2006 Oct; 89(10):3817-25. PubMed ID: 16960056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.