BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35713745)

  • 21. Ultra-High Initial Coulombic Efficiency Induced by Interface Engineering Enables Rapid, Stable Sodium Storage.
    Wan Y; Song K; Chen W; Qin C; Zhang X; Zhang J; Dai H; Hu Z; Yan P; Liu C; Sun S; Chou SL; Shen C
    Angew Chem Int Ed Engl; 2021 May; 60(20):11481-11486. PubMed ID: 33686746
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mg
    Bian C; Fu R; Shi Z; Ji J; Zhang J; Chen W; Zhou X; Shi S; Liu Z
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15337-15345. PubMed ID: 35315640
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanostructured Black Phosphorus/Ketjenblack-Multiwalled Carbon Nanotubes Composite as High Performance Anode Material for Sodium-Ion Batteries.
    Xu GL; Chen Z; Zhong GM; Liu Y; Yang Y; Ma T; Ren Y; Zuo X; Wu XH; Zhang X; Amine K
    Nano Lett; 2016 Jun; 16(6):3955-65. PubMed ID: 27222911
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MnSn
    Goriparti S; McGrath AJ; Rosenberg SG; Siegal MP; Ivanov SA; Harrison KL
    Nanotechnology; 2021 Jun; 32(37):. PubMed ID: 34165443
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Achieving High Initial Coulombic Efficiency and Capacity in a Surface Chemical Grafting Layer of Plateau-type Sodium Titanate.
    Zhang Y; Li L; Wang F; Wang H; Jiang Z; Lin Z; Bai Z; Jiang Y; Zhang Y; Chen B; Tang Y
    ChemSusChem; 2024 Jun; 17(11):e202301598. PubMed ID: 38264796
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of Free-Standing Tin Phosphide/Phosphate Carbon Composite Nanofibers as Anodes for Lithium-Ion Batteries with Improved Low-Temperature Performance.
    Belgibayeva A; Rakhatkyzy M; Rakhmetova A; Kalimuldina G; Nurpeissova A; Bakenov Z
    Small; 2023 Nov; 19(48):e2304062. PubMed ID: 37507824
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular Engineering Enabling High Initial Coulombic Efficiency and Rubost Solid Electrolyte Interphase for Hard Carbon in Sodium-Ion Batteries.
    Sun Y; Hou R; Xu S; Zhou H; Guo S
    Angew Chem Int Ed Engl; 2024 Mar; 63(11):e202318960. PubMed ID: 38196292
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of Electrolyte Salts on Na Storage Performance for High-Surface-Area Carbon Anodes.
    Li Y; Chen S; Xu S; Wang Z; Yang K; Hu J; Cao B; Zhao W; Zhang M; Yang L; Pan F
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):48745-48752. PubMed ID: 34622658
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving Natural Microcrystalline Graphite Performances by a Dual Modification Strategy toward Practical Application of Lithium Ion Batteries.
    Peng J; Tan H; Wu Z; Tang Y; Liu P; He L; Yang J; Hu S; Wang S; Wang X
    ACS Appl Mater Interfaces; 2023 Dec; 15(51):59552-59560. PubMed ID: 38088861
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High Capacity and High Efficiency Maple Tree-Biomass-Derived Hard Carbon as an Anode Material for Sodium-Ion Batteries.
    Wang Y; Feng Z; Zhu W; Gariépy V; Gagnon C; Provencher M; Laul D; Veillette R; Trudeau ML; Guerfi A; Zaghib K
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30050008
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitrogen-Doped Carbon for Red Phosphorous Based Anode Materials for Lithium Ion Batteries.
    Li J; Qian Y; Wang L; He X
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29342917
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interconnected hollow carbon nanospheres for stable lithium metal anodes.
    Zheng G; Lee SW; Liang Z; Lee HW; Yan K; Yao H; Wang H; Li W; Chu S; Cui Y
    Nat Nanotechnol; 2014 Aug; 9(8):618-23. PubMed ID: 25064396
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Guest Ion-Dependent Reaction Mechanisms of New Pseudocapacitive Mg
    Fu Q; Schwarz B; Ding Z; Sarapulova A; Weidler PG; Missyul A; Etter M; Welter E; Hua W; Knapp M; Dsoke S; Ehrenberg H
    Adv Sci (Weinh); 2023 Apr; 10(11):e2207283. PubMed ID: 36794292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface Modification of Fe
    Deng X; Chen H; Wu X; Wang YX; Zhong F; Ai X; Yang H; Cao Y
    Small; 2020 May; 16(20):e2000745. PubMed ID: 32329571
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Monodisperse Manganese-Vanadium-Oxo Clusters with Extraordinary Lithium Storage.
    Tang W; Qiu T; Hu Z; Li Y; Yao R; Wang Y; Lang X; Tan H; Li Y; Jiang Q
    Adv Sci (Weinh); 2024 Jun; ():e2402616. PubMed ID: 38828766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A chemically stabilized sulfur cathode for lean electrolyte lithium sulfur batteries.
    Luo C; Hu E; Gaskell KJ; Fan X; Gao T; Cui C; Ghose S; Yang XQ; Wang C
    Proc Natl Acad Sci U S A; 2020 Jun; 117(26):14712-14720. PubMed ID: 32554498
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metastable FeCN
    Qi H; Zhao C; Huang J; He C; Tang L; Deng W
    Nanoscale; 2022 Jan; 14(3):780-789. PubMed ID: 34951433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microwave-assisted upcycling of plastic waste to high-performance carbon anode for lithium-ion batteries.
    Mohd Abdah MAA; Mohammad Azlan FN; Wong WP; Mustafa MN; Walvekar R; Khalid M
    Chemosphere; 2024 Feb; 349():140973. PubMed ID: 38122940
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-yolk-shell SnO
    Su L; Xu Y; Xie J; Wang L; Wang Y
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35172-35179. PubMed ID: 27959502
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stabilizing Lithium Metal Anode Enabled by a Natural Polymer Layer for Lithium-Sulfur Batteries.
    Cui C; Zhang R; Fu C; Xie B; Du C; Wang J; Gao Y; Yin G; Zuo P
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):28252-28260. PubMed ID: 34101431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.