These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35713785)

  • 21. Application of geopolymers synthesized from incinerated municipal solid waste ashes for the removal of cationic dye from water.
    Al-Ghouti MA; Khan M; Nasser MS; Al Saad K; Ee Heng O
    PLoS One; 2020; 15(11):e0239095. PubMed ID: 33151952
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of dye adsorption onto activated carbon from the shells of Macoré fruit.
    Aboua KN; Yobouet YA; Yao KB; Goné DL; Trokourey A
    J Environ Manage; 2015 Jun; 156():10-4. PubMed ID: 25791232
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of persimmon fruit peel and its biochar for removal of methylene blue from aqueous solutions: thermodynamic, kinetic and isotherm studies.
    Ates A; Oymak T
    Int J Phytoremediation; 2020; 22(6):607-616. PubMed ID: 31833379
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Grass waste: a novel sorbent for the removal of basic dye from aqueous solution.
    Hameed BH
    J Hazard Mater; 2009 Jul; 166(1):233-8. PubMed ID: 19111987
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Macroalgae of Iridaea cordata as an efficient biosorbent to remove hazardous cationic dyes from aqueous solutions.
    Escudero LB; Smichowski PN; Dotto GL
    Water Sci Technol; 2017 Dec; 76(11-12):3379-3391. PubMed ID: 29236017
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A sustainable process for adsorptive removal of methylene blue onto a food grade mucilage: kinetics, thermodynamics, and equilibrium evaluation.
    Mijinyawa AH; Durga G; Mishra A
    Int J Phytoremediation; 2019; 21(11):1122-1129. PubMed ID: 31056928
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adsorption studies of methylene blue and gentian violet on sugarcane bagasse modified with EDTA dianhydride (EDTAD) in aqueous solutions: kinetic and equilibrium aspects.
    Gusmão KA; Gurgel LV; Melo TM; Gil LF
    J Environ Manage; 2013 Mar; 118():135-43. PubMed ID: 23428463
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adsorption of Methylene blue and Rhodamine B by using biochar derived from Pongamia glabra seed cover.
    Bordoloi N; Dey MD; Mukhopadhyay R; Kataki R
    Water Sci Technol; 2018 Feb; 77(3-4):638-646. PubMed ID: 29431708
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adsorptive removal of anionic dye using calcined oyster shells: isotherms, kinetics, and thermodynamics.
    Inthapanya X; Wu S; Han Z; Zeng G; Wu M; Yang C
    Environ Sci Pollut Res Int; 2019 Feb; 26(6):5944-5954. PubMed ID: 30612377
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An adsorbent based on humic acid and carboxymethyl cellulose for efficient dye removal from aqueous solution.
    Lu S; Liu W; Wang Y; Zhang Y; Li P; Jiang D; Fang C; Li Y
    Int J Biol Macromol; 2019 Aug; 135():790-797. PubMed ID: 31103595
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adsorptive removal of direct red 80 and methylene blue from aqueous solution by potato peels: a comparison of anionic and cationic dyes.
    Ben Jeddou K; Bouaziz F; Ben Taheur F; Nouri-Ellouz O; Ellouz-Ghorbel R; Ellouz-Chaabouni S
    Water Sci Technol; 2021 Mar; 83(6):1384-1398. PubMed ID: 33767044
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sorption kinetics and isotherm studies of a cationic dye using agricultural waste: broad bean peels.
    Hameed BH; El-Khaiary MI
    J Hazard Mater; 2008 Jun; 154(1-3):639-48. PubMed ID: 18063301
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adsorption of dyes on carbon nanomaterials from aqueous solutions.
    Rodríguez A; Ovejero G; Sotelo JL; Mestanza M; García J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Oct; 45(12):1642-53. PubMed ID: 20730657
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A systematic study of cellulose-reactive anionic dye removal using a sustainable bioadsorbent.
    Teshager FM; Habtu NG; Mequanint K
    Chemosphere; 2022 Sep; 303(Pt 2):135024. PubMed ID: 35618062
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of Adsorptive Removal of Methylene Blue Using Dried Biomass of Rhizopus oryzae.
    Dey MD; Shukla R; Bordoloi NK; Doley R; Mukhopadhyay R
    Appl Biochem Biotechnol; 2015 Sep; 177(2):541-55. PubMed ID: 26234436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient adsorption of methylene blue by xanthan gum derivative modified hydroxyapatite.
    Chen X; Li P; Zeng X; Kang Y; Wang J; Xie H; Liu Y; Zhang Y
    Int J Biol Macromol; 2020 May; 151():1040-1048. PubMed ID: 31743715
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Marine alga "Bifurcaria bifurcata": biosorption of Reactive Blue 19 and methylene blue from aqueous solutions.
    Bouzikri S; Ouasfi N; Benzidia N; Salhi A; Bakkas S; Khamliche L
    Environ Sci Pollut Res Int; 2020 Sep; 27(27):33636-33648. PubMed ID: 32030583
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of methylene blue by lava adsorption and catalysis oxidation.
    Ma J; Zhang J; Li D
    Environ Technol; 2010 Mar; 31(3):267-76. PubMed ID: 20426268
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adsorption efficiency of date palm based activated carbon-alginate membrane for methylene blue.
    Durrani WZ; Nasrullah A; Khan AS; Fagieh TM; Bakhsh EM; Akhtar K; Khan SB; Din IU; Khan MA; Bokhari A
    Chemosphere; 2022 Sep; 302():134793. PubMed ID: 35525452
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue.
    Nasrullah A; Bhat AH; Naeem A; Isa MH; Danish M
    Int J Biol Macromol; 2018 Feb; 107(Pt B):1792-1799. PubMed ID: 29032214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.