BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 35713827)

  • 1. Assessing and mapping distribution, area, and density of riparian forests in southern Iran using Sentinel-2A, Google earth, and field data.
    Eskandari S; Pourghasemi HR
    Environ Sci Pollut Res Int; 2022 Nov; 29(52):79605-79617. PubMed ID: 35713827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid and automatic burned area detection using sentinel-2 time-series images in google earth engine cloud platform: a case study over the Andika and Behbahan Regions, Iran.
    Farhadi H; Mokhtarzade M; Ebadi H; Beirami BA
    Environ Monit Assess; 2022 Apr; 194(5):369. PubMed ID: 35430649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rapid and accurate method of mapping invasive
    Newete SW; Mayonde S; Kekana T; Adam E
    PeerJ; 2023; 11():e15027. PubMed ID: 37090111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iranian wetland inventory map at a spatial resolution of 10 m using Sentinel-1 and Sentinel-2 data on the Google Earth Engine cloud computing platform.
    Hemati M; Hasanlou M; Mahdianpari M; Mohammadimanesh F
    Environ Monit Assess; 2023 Apr; 195(5):558. PubMed ID: 37046022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping of Land Cover with Optical Images, Supervised Algorithms, and Google Earth Engine.
    Pech-May F; Aquino-Santos R; Rios-Toledo G; Posadas-Durán JPF
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forest biomass estimation using remote sensing and field inventory: a case study of Tripura, India.
    Pandey PC; Srivastava PK; Chetri T; Choudhary BK; Kumar P
    Environ Monit Assess; 2019 Aug; 191(9):593. PubMed ID: 31456055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Irrigated Crop Types Mapping in Tashkent Province of Uzbekistan with Remote Sensing-Based Classification Methods.
    Erdanaev E; Kappas M; Wyss D
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forest structure parameter extraction using SPOT-7 satellite data by object- and pixel-based classification methods.
    Rahimizadeh N; Babaie Kafaky S; Sahebi MR; Mataji A
    Environ Monit Assess; 2019 Dec; 192(1):43. PubMed ID: 31836941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the integrity of forested riparian buffers over a large area using LiDAR data and Google Earth Engine.
    Zurqani HA; Post CJ; Mikhailova EA; Cope MP; Allen JS; Lytle BA
    Sci Rep; 2020 Aug; 10(1):14096. PubMed ID: 32839474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of regression tree method for Sentinel-2 satellite data to mapping percent tree cover in different forest types.
    Cilek A; Berberoglu S; Donmez C; Sahingoz M
    Environ Sci Pollut Res Int; 2022 Apr; 29(16):23665-23676. PubMed ID: 34813016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of Iran's Forest Nationalization Law on Forest Cover Changes over Six Decades: A Case Study of a Zagros Sparse Coppice Oak Forest.
    Beygi Heidarlou H; Banj Shafiei A; Nasiri V; Niţă MD; Borz SA; Lopez-Carr D
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system.
    Michez A; Piégay H; Lisein J; Claessens H; Lejeune P
    Environ Monit Assess; 2016 Mar; 188(3):146. PubMed ID: 26850712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Comparison of GIMMS and MODIS normalized vegetation index composite data for Qing-Hai-Tibet Plateau].
    Du JQ; Shu JM; Wang YH; Li YC; Zhang LB; Guo Y
    Ying Yong Sheng Tai Xue Bao; 2014 Feb; 25(2):533-44. PubMed ID: 24830255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling the productivity of Siberian larch forests from Landsat NDVI time series in fragmented forest stands of the Mongolian forest-steppe.
    Erasmi S; Klinge M; Dulamsuren C; Schneider F; Hauck M
    Environ Monit Assess; 2021 Mar; 193(4):200. PubMed ID: 33738573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing aboveground tropical forest biomass using Google Earth canopy images.
    Ploton P; Pélissier R; Proisy C; Flavenot T; Barbier N; Rai SN; Couteron P
    Ecol Appl; 2012 Apr; 22(3):993-1003. PubMed ID: 22645827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of high spatial resolution satellite imagery for monitoring riparian vegetation: riverine management in the smallholding.
    Rivas-Fandiño P; Acuña-Alonso C; Novo A; Pacheco FAL; Álvarez X
    Environ Monit Assess; 2022 Nov; 195(1):81. PubMed ID: 36342553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the contemporary status of Nebraska's eastern saline wetlands by using a machine learning algorithm on the Google Earth Engine cloud computing platform.
    Zhang L; Hu Q; Tang Z
    Environ Monit Assess; 2022 Feb; 194(3):193. PubMed ID: 35171378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extraction and spatiotemporal changes of open-pit mines during 1985-2020 using Google Earth Engine: A case study of Qingzhou City, Shandong Province, China.
    Ruifeng L; Kai Y; Xing L; Xiaoli L; Xitao Z; Xiaocheng G; Juan F; Shixin C
    Environ Monit Assess; 2022 Dec; 195(1):209. PubMed ID: 36534206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring forest dynamics with multi-scale and time series imagery.
    Huang C; Zhou Z; Wang D; Dian Y
    Environ Monit Assess; 2016 May; 188(5):273. PubMed ID: 27056478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mature and old-growth riparian forests: structure, dynamics, and effects on Adirondack stream habitats.
    Keeton WS; Kraft CE; Warren DR
    Ecol Appl; 2007 Apr; 17(3):852-68. PubMed ID: 17494402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.