These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35714222)

  • 1. Recurrent de novo mutations in CLDN5 induce an anion-selective blood-brain barrier and alternating hemiplegia.
    Hashimoto Y; Poirier K; Boddaert N; Hubert L; Aubart M; Kaminska A; Alison M; Desguerre I; Munnich A; Campbell M
    Brain; 2022 Oct; 145(10):3374-3382. PubMed ID: 35714222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The CLDN5 gene at the blood-brain barrier in health and disease.
    Hashimoto Y; Greene C; Munnich A; Campbell M
    Fluids Barriers CNS; 2023 Mar; 20(1):22. PubMed ID: 36978081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tight junction proteins at the blood-brain barrier: far more than claudin-5.
    Berndt P; Winkler L; Cording J; Breitkreuz-Korff O; Rex A; Dithmer S; Rausch V; Blasig R; Richter M; Sporbert A; Wolburg H; Blasig IE; Haseloff RF
    Cell Mol Life Sci; 2019 May; 76(10):1987-2002. PubMed ID: 30734065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variants in CLDN5 cause a syndrome characterized by seizures, microcephaly and brain calcifications.
    Deshwar AR; Cytrynbaum C; Murthy H; Zon J; Chitayat D; Volpatti J; Newbury-Ecob R; Ellard S; Allen HL; Yu EP; Noche R; Walker S; Scherer SW; Mahida S; Elitt CM; Nicolas G; Goldenberg A; Saugier-Veber P; Lecoquierre F; Dabaj I; Meddaugh H; Marble M; Keppler-Noreuil KM; Drayson L; Barañano KW; Chassevent A; Agre K; Létard P; Bilan F; Le Guyader G; Laquerrière A; Ramsey K; Henderson L; Brady L; Tarnopolsky M; Bainbridge M; Friedman J; Capri Y; Athayde L; Kok F; Gurgel-Giannetti J; Ramos LLP; Blaser S; Dowling JJ; Weksberg R
    Brain; 2023 Jun; 146(6):2285-2297. PubMed ID: 36477332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible opening of the blood-brain barrier by claudin-5-binding variants of Clostridium perfringens enterotoxin's claudin-binding domain.
    Neuhaus W; Piontek A; Protze J; Eichner M; Mahringer A; Subileau EA; Lee IM; Schulzke JD; Krause G; Piontek J
    Biomaterials; 2018 Apr; 161():129-143. PubMed ID: 29421550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The region-selective regulation of endothelial claudin-5 expression and signaling in brain health and disorders.
    Chiba H; Ichikawa-Tomikawa N; Imura T; Sugimoto K
    J Cell Physiol; 2021 Oct; 236(10):7134-7143. PubMed ID: 33694168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mosaic deletion of claudin-5 reveals rapid non-cell-autonomous consequences of blood-brain barrier leakage.
    Vázquez-Liébanas E; Mocci G; Li W; Laviña B; Reddy A; O'Connor C; Hudson N; Elbeck Z; Nikoloudis I; Gaengel K; Vanlandewijck M; Campbell M; Betsholtz C; Mäe MA
    Cell Rep; 2024 Mar; 43(3):113911. PubMed ID: 38446668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific binding of a mutated fragment of Clostridium perfringens enterotoxin to endothelial claudin-5 and its modulation of cerebral vascular permeability.
    Liao Z; Yang Z; Piontek A; Eichner M; Krause G; Li L; Piontek J; Zhang J
    Neuroscience; 2016 Jul; 327():53-63. PubMed ID: 27095710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Claudin-5 regulates blood-brain barrier permeability by modifying brain microvascular endothelial cell proliferation, migration, and adhesion to prevent lung cancer metastasis.
    Ma SC; Li Q; Peng JY; Zhouwen JL; Diao JF; Niu JX; Wang X; Guan XD; Jia W; Jiang WG
    CNS Neurosci Ther; 2017 Dec; 23(12):947-960. PubMed ID: 28961379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inducers of the endothelial cell barrier identified through chemogenomic screening in genome-edited hPSC-endothelial cells.
    Roudnicky F; Zhang JD; Kim BK; Pandya NJ; Lan Y; Sach-Peltason L; Ragelle H; Strassburger P; Gruener S; Lazendic M; Uhles S; Revelant F; Eidam O; Sturm G; Kueppers V; Christensen K; Goldstein LD; Tzouros M; Banfai B; Modrusan Z; Graf M; Patsch C; Burcin M; Meyer CA; Westenskow PD; Cowan CA
    Proc Natl Acad Sci U S A; 2020 Aug; 117(33):19854-19865. PubMed ID: 32759214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. JAM-A Acts via C/EBP-α to Promote Claudin-5 Expression and Enhance Endothelial Barrier Function.
    Kakogiannos N; Ferrari L; Giampietro C; Scalise AA; Maderna C; Ravà M; Taddei A; Lampugnani MG; Pisati F; Malinverno M; Martini E; Costa I; Lupia M; Cavallaro U; Beznoussenko GV; Mironov AA; Fernandes B; Rudini N; Dejana E; Giannotta M
    Circ Res; 2020 Sep; 127(8):1056-1073. PubMed ID: 32673519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Assessment of Different Structural Models for Claudin-5 Complexes in Blood-Brain Barrier Tight Junctions.
    Berselli A; Alberini G; Benfenati F; Maragliano L
    ACS Chem Neurosci; 2022 Jul; 13(14):2140-2153. PubMed ID: 35816296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. miR-27a-3p regulates expression of intercellular junctions at the brain endothelium and controls the endothelial barrier permeability.
    Harati R; Hammad S; Tlili A; Mahfood M; Mabondzo A; Hamoudi R
    PLoS One; 2022; 17(1):e0262152. PubMed ID: 35025943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Claudin-5a knockdown attenuates blood-neural barrier in zebrafish.
    Ahn JC; Hwang SJ; Lee HJ; Kim KW
    Comp Biochem Physiol C Toxicol Pharmacol; 2021 Dec; 250():109176. PubMed ID: 34500089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microvascular stabilization via blood-brain barrier regulation prevents seizure activity.
    Greene C; Hanley N; Reschke CR; Reddy A; Mäe MA; Connolly R; Behan C; O'Keeffe E; Bolger I; Hudson N; Delaney C; Farrell MA; O'Brien DF; Cryan J; Brett FM; Beausang A; Betsholtz C; Henshall DC; Doherty CP; Campbell M
    Nat Commun; 2022 Apr; 13(1):2003. PubMed ID: 35422069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polar and charged extracellular residues conserved among barrier-forming claudins contribute to tight junction strand formation.
    Piontek A; Rossa J; Protze J; Wolburg H; Hempel C; Günzel D; Krause G; Piontek J
    Ann N Y Acad Sci; 2017 Jun; 1397(1):143-156. PubMed ID: 28415153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of pathogenic and artificial mutations on Claudin-5 selectivity from molecular dynamics simulations.
    Berselli A; Alberini G; Benfenati F; Maragliano L
    Comput Struct Biotechnol J; 2023; 21():2640-2653. PubMed ID: 37138900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RhoA/ROCK-2 Pathway Inhibition and Tight Junction Protein Upregulation by Catalpol Suppresses Lipopolysaccaride-Induced Disruption of Blood-Brain Barrier Permeability.
    Feng S; Zou L; Wang H; He R; Liu K; Zhu H
    Molecules; 2018 Sep; 23(9):. PubMed ID: 30227623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connexin 43 gap junctions contribute to brain endothelial barrier hyperpermeability in familial cerebral cavernous malformations type III by modulating tight junction structure.
    Johnson AM; Roach JP; Hu A; Stamatovic SM; Zochowski MR; Keep RF; Andjelkovic AV
    FASEB J; 2018 May; 32(5):2615-2629. PubMed ID: 29295866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SARS-CoV-2 disrupts respiratory vascular barriers by suppressing Claudin-5 expression.
    Hashimoto R; Takahashi J; Shirakura K; Funatsu R; Kosugi K; Deguchi S; Yamamoto M; Tsunoda Y; Morita M; Muraoka K; Tanaka M; Kanbara T; Tanaka S; Tamiya S; Tokunoh N; Kawai A; Ikawa M; Ono C; Tachibana K; Kondoh M; Obana M; Matsuura Y; Ohsumi A; Noda T; Yamamoto T; Yoshioka Y; Torisawa YS; Date H; Fujio Y; Nagao M; Takayama K; Okada Y
    Sci Adv; 2022 Sep; 8(38):eabo6783. PubMed ID: 36129989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.