These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35714245)

  • 1. How to Simulate Quantum Measurement without Computing Marginals.
    Bravyi S; Gosset D; Liu Y
    Phys Rev Lett; 2022 Jun; 128(22):220503. PubMed ID: 35714245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulating Quantum Circuits Using Efficient Tensor Network Contraction Algorithms with Subexponential Upper Bound.
    Wahl TB; Strelchuk S
    Phys Rev Lett; 2023 Nov; 131(18):180601. PubMed ID: 37977622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement-based classical computation.
    Hoban MJ; Wallman JJ; Anwar H; Usher N; Raussendorf R; Browne DE
    Phys Rev Lett; 2014 Apr; 112(14):140505. PubMed ID: 24765935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Verifying Random Quantum Circuits with Arbitrary Geometry Using Tensor Network States Algorithm.
    Guo C; Zhao Y; Huang HL
    Phys Rev Lett; 2021 Feb; 126(7):070502. PubMed ID: 33666457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impossibility of Classically Simulating One-Clean-Qubit Model with Multiplicative Error.
    Fujii K; Kobayashi H; Morimae T; Nishimura H; Tamate S; Tani S
    Phys Rev Lett; 2018 May; 120(20):200502. PubMed ID: 29864350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. qTorch: The quantum tensor contraction handler.
    Fried ES; Sawaya NPD; Cao Y; Kivlichan ID; Romero J; Aspuru-Guzik A
    PLoS One; 2018; 13(12):e0208510. PubMed ID: 30532242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum advantage of unitary Clifford circuits with magic state inputs.
    Yoganathan M; Jozsa R; Strelchuk S
    Proc Math Phys Eng Sci; 2019 May; 475(2225):20180427. PubMed ID: 31236039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hardness of classically simulating the one-clean-qubit model.
    Morimae T; Fujii K; Fitzsimons JF
    Phys Rev Lett; 2014 Apr; 112(13):130502. PubMed ID: 24745398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transforming graph states using single-qubit operations.
    Dahlberg A; Wehner S
    Philos Trans A Math Phys Eng Sci; 2018 Jul; 376(2123):. PubMed ID: 29807902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum computational advantage via 60-qubit 24-cycle random circuit sampling.
    Zhu Q; Cao S; Chen F; Chen MC; Chen X; Chung TH; Deng H; Du Y; Fan D; Gong M; Guo C; Guo C; Guo S; Han L; Hong L; Huang HL; Huo YH; Li L; Li N; Li S; Li Y; Liang F; Lin C; Lin J; Qian H; Qiao D; Rong H; Su H; Sun L; Wang L; Wang S; Wu D; Wu Y; Xu Y; Yan K; Yang W; Yang Y; Ye Y; Yin J; Ying C; Yu J; Zha C; Zhang C; Zhang H; Zhang K; Zhang Y; Zhao H; Zhao Y; Zhou L; Lu CY; Peng CZ; Zhu X; Pan JW
    Sci Bull (Beijing); 2022 Feb; 67(3):240-245. PubMed ID: 36546072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous-Variable Instantaneous Quantum Computing is Hard to Sample.
    Douce T; Markham D; Kashefi E; Diamanti E; Coudreau T; Milman P; van Loock P; Ferrini G
    Phys Rev Lett; 2017 Feb; 118(7):070503. PubMed ID: 28256857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum-Teleportation-Inspired Algorithm for Sampling Large Random Quantum Circuits.
    Chen MC; Li R; Gan L; Zhu X; Yang G; Lu CY; Pan JW
    Phys Rev Lett; 2020 Feb; 124(8):080502. PubMed ID: 32167353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Classical Simulation of Clifford Circuits with Nonstabilizer Input States.
    Bu K; Koh DE
    Phys Rev Lett; 2019 Oct; 123(17):170502. PubMed ID: 31702253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum Computation using Arrays of N Polar Molecules in Pendular States.
    Wei Q; Cao Y; Kais S; Friedrich B; Herschbach D
    Chemphyschem; 2016 Nov; 17(22):3714-3722. PubMed ID: 27767247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benchmarking treewidth as a practical component of tensor network simulations.
    Dumitrescu EF; Fisher AL; Goodrich TD; Humble TS; Sullivan BD; Wright AL
    PLoS One; 2018; 13(12):e0207827. PubMed ID: 30562341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Realizing quantum convolutional neural networks on a superconducting quantum processor to recognize quantum phases.
    Herrmann J; Llima SM; Remm A; Zapletal P; McMahon NA; Scarato C; Swiadek F; Andersen CK; Hellings C; Krinner S; Lacroix N; Lazar S; Kerschbaum M; Zanuz DC; Norris GJ; Hartmann MJ; Wallraff A; Eichler C
    Nat Commun; 2022 Jul; 13(1):4144. PubMed ID: 35842418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Verifiable Measurement-Only Blind Quantum Computing with Stabilizer Testing.
    Hayashi M; Morimae T
    Phys Rev Lett; 2015 Nov; 115(22):220502. PubMed ID: 26650284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of Quantum Circuits Using the Big-Batch Tensor Network Method.
    Pan F; Zhang P
    Phys Rev Lett; 2022 Jan; 128(3):030501. PubMed ID: 35119890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum Schur Sampling Circuits can be Strongly Simulated.
    Havlíček V; Strelchuk S
    Phys Rev Lett; 2018 Aug; 121(6):060505. PubMed ID: 30141646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Are random pure States useful for quantum computation?
    Bremner MJ; Mora C; Winter A
    Phys Rev Lett; 2009 May; 102(19):190502. PubMed ID: 19518931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.