BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35714350)

  • 21. Histone Purification Combined with High-Resolution Mass Spectrometry to Examine Histone Post-Translational Modifications and Histone Variants in Caenorhabditis elegans.
    Millan-Ariño L; Yuan ZF; Oomen ME; Brandenburg S; Chernobrovkin A; Salignon J; Körner L; Zubarev RA; Garcia BA; Riedel CG
    Curr Protoc Protein Sci; 2020 Dec; 102(1):e114. PubMed ID: 32997895
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sequential ChIP Protocol for Profiling Bivalent Epigenetic Modifications (ReChIP).
    Desvoyes B; Sequeira-Mendes J; Vergara Z; Madeira S; Gutierrez C
    Methods Mol Biol; 2018; 1675():83-97. PubMed ID: 29052187
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chromatin Immunoprecipitation for Analyzing Transcription Factor Binding and Histone Modifications in Drosophila.
    Ghavi-Helm Y; Zhao B; Furlong EE
    Methods Mol Biol; 2016; 1478():263-277. PubMed ID: 27730588
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chromatin Immunoprecipitation Sequencing (ChIP-seq) for Detecting Histone Modifications and Modifiers.
    Hino S; Sato T; Nakao M
    Methods Mol Biol; 2023; 2577():55-64. PubMed ID: 36173565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chromatin immunoprecipitation and multiplex sequencing (ChIP-Seq) to identify global transcription factor binding sites in the nematode Caenorhabditis elegans.
    Brdlik CM; Niu W; Snyder M
    Methods Enzymol; 2014; 539():89-111. PubMed ID: 24581441
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scalable single-cell profiling of chromatin modifications with sciCUT&Tag.
    Janssens DH; Greene JE; Wu SJ; Codomo CA; Minot SS; Furlan SN; Ahmad K; Henikoff S
    Nat Protoc; 2024 Jan; 19(1):83-112. PubMed ID: 37935964
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcription factor chromatin profiling genome-wide using uliCUT&RUN in single cells and individual blastocysts.
    Patty BJ; Hainer SJ
    Nat Protoc; 2021 May; 16(5):2633-2666. PubMed ID: 33911257
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic changes of histone H3 marks during Caenorhabditis elegans lifecycle revealed by middle-down proteomics.
    Sidoli S; Vandamme J; Salcini AE; Jensen ON
    Proteomics; 2016 Feb; 16(3):459-64. PubMed ID: 26508544
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-throughput library transgenesis in
    Stevenson ZC; Moerdyk-Schauwecker MJ; Banse SA; Patel DS; Lu H; Phillips PC
    Elife; 2023 Jul; 12():. PubMed ID: 37401921
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromatin integration labeling for mapping DNA-binding proteins and modifications with low input.
    Handa T; Harada A; Maehara K; Sato S; Nakao M; Goto N; Kurumizaka H; Ohkawa Y; Kimura H
    Nat Protoc; 2020 Oct; 15(10):3334-3360. PubMed ID: 32807906
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Histone Modification Analysis of Low-Mappability Regions.
    Yoshizawa-Sugata N; Masai H
    Methods Mol Biol; 2023; 2519():163-185. PubMed ID: 36066721
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The protocol of CUT&Tag for metabolic tissue cells.
    Zhang ZY; Zhou YP; Meng ZX
    Yi Chuan; 2022 Oct; 44(10):958-966. PubMed ID: 36384731
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-wide Profiling of Transcription Factor-DNA Binding Interactions in Candida albicans: A Comprehensive CUT&RUN Method and Data Analysis Workflow.
    Qasim MN; Valle Arevalo A; Paropkari AD; Ennis CL; Sindi SS; Nobile CJ; Hernday AD
    J Vis Exp; 2022 Apr; (182):. PubMed ID: 35435920
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A plug and play microfluidic platform for standardized sensitive low-input chromatin immunoprecipitation.
    Dirks RAM; Thomas PC; Wu H; Jones RC; Stunnenberg HG; Marks H
    Genome Res; 2021 May; 31(5):919-933. PubMed ID: 33707229
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-wide snapshot of chromatin regulators and states in Xenopus embryos by ChIP-Seq.
    Gentsch GE; Patrushev I; Smith JC
    J Vis Exp; 2015 Feb; (96):. PubMed ID: 25742027
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Histone Native Chromatin Immunoprecipitation.
    Alonso A; Bernstein E; Hasson D
    Methods Mol Biol; 2018; 1832():77-104. PubMed ID: 30073523
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond.
    Mundade R; Ozer HG; Wei H; Prabhu L; Lu T
    Cell Cycle; 2014; 13(18):2847-52. PubMed ID: 25486472
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromatin immunoprecipitation (ChIP) coupled to detection by quantitative real-time PCR to study transcription factor binding to DNA in Caenorhabditis elegans.
    Mukhopadhyay A; Deplancke B; Walhout AJ; Tissenbaum HA
    Nat Protoc; 2008; 3(4):698-709. PubMed ID: 18388953
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automatically tracking feeding behavior in populations of foraging
    Bonnard E; Liu J; Zjacic N; Alvarez L; Scholz M
    Elife; 2022 Sep; 11():. PubMed ID: 36083280
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ssvQC: an integrated CUT&RUN quality control workflow for histone modifications and transcription factors.
    Boyd J; Rodriguez P; Schjerven H; Frietze S
    BMC Res Notes; 2021 Sep; 14(1):366. PubMed ID: 34544495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.