BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35714350)

  • 41. Analyzing the Genome-Wide Distribution of Histone Marks by CUT&Tag in Drosophila Embryos.
    Zenk F; Cardamone F; Ibarra Morales DA; Atinbayeva N; Zhan Y; Iovino N
    Methods Mol Biol; 2023; 2655():1-17. PubMed ID: 37212984
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improved Methods for Single-Molecule Fluorescence In Situ Hybridization and Immunofluorescence in Caenorhabditis elegans Embryos.
    Parker DM; Winkenbach LP; Parker A; Boyson S; Nishimura EO
    Curr Protoc; 2021 Nov; 1(11):e299. PubMed ID: 34826343
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chromatin Immunoprecipitation: Application to the Study of Asthma.
    García-Sánchez A; Marqués-García F
    Methods Mol Biol; 2016; 1434():121-37. PubMed ID: 27300535
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Studying histone modifications and their genomic functions by employing chromatin immunoprecipitation and immunoblotting.
    Jayani RS; Ramanujam PL; Galande S
    Methods Cell Biol; 2010; 98():35-56. PubMed ID: 20816229
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cell-type specific profiling of histone post-translational modifications in the adult mouse striatum.
    Carpenter MD; Fischer DK; Zhang S; Bond AM; Czarnecki KS; Woolf MT; Song H; Heller EA
    Nat Commun; 2022 Dec; 13(1):7720. PubMed ID: 36513652
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Expeditious Extraction of Histones from Limited Cells or Tissue Samples and Quantitative Top-Down Proteomic Analysis.
    Holt MV; Wang T; Young NL
    Curr Protoc; 2021 Feb; 1(2):e26. PubMed ID: 33534192
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Peak calling by Sparse Enrichment Analysis for CUT&RUN chromatin profiling.
    Meers MP; Tenenbaum D; Henikoff S
    Epigenetics Chromatin; 2019 Jul; 12(1):42. PubMed ID: 31300027
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Individual and Sequential Chromatin Immunoprecipitation Protocols.
    Furlan-Magaril M; Recillas-Targa F
    Methods Mol Biol; 2015; 1334():205-18. PubMed ID: 26404152
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Efficient low-cost chromatin profiling with CUT&Tag.
    Kaya-Okur HS; Janssens DH; Henikoff JG; Ahmad K; Henikoff S
    Nat Protoc; 2020 Oct; 15(10):3264-3283. PubMed ID: 32913232
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differential localization and independent acquisition of the H3K9me2 and H3K9me3 chromatin modifications in the Caenorhabditis elegans adult germ line.
    Bessler JB; Andersen EC; Villeneuve AM
    PLoS Genet; 2010 Jan; 6(1):e1000830. PubMed ID: 20107519
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chromatin Immunoprecipitation (ChIP) Protocol for Low-abundance Embryonic Samples.
    Rehimi R; Bartusel M; Solinas F; Altmüller J; Rada-Iglesias A
    J Vis Exp; 2017 Aug; (126):. PubMed ID: 28872116
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimized methods of chromatin immunoprecipitation for profiling histone modifications in industrial microalgae Nannochloropsis spp.
    Wei L; Xu J
    J Phycol; 2018 Jun; 54(3):358-367. PubMed ID: 29444334
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of Transcription Factor Binding Sites by Cleavage Under Target and Release Using Nuclease in Zebrafish.
    Barakat R; Campbell CA; Espin-Palazon R
    Zebrafish; 2022 Jun; 19(3):104-108. PubMed ID: 35704898
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Simultaneous profiling of multiple chromatin proteins in the same cells.
    Gopalan S; Wang Y; Harper NW; Garber M; Fazzio TG
    Mol Cell; 2021 Nov; 81(22):4736-4746.e5. PubMed ID: 34637755
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Distinct features of lamin A-interacting chromatin domains mapped by ChIP-sequencing from sonicated or micrococcal nuclease-digested chromatin.
    Lund EG; Duband-Goulet I; Oldenburg A; Buendia B; Collas P
    Nucleus; 2015; 6(1):30-9. PubMed ID: 25602132
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genome-wide mapping of nucleosome occupancy, histone modifications, and gene expression using next-generation sequencing technology.
    Wei G; Hu G; Cui K; Zhao K
    Methods Enzymol; 2012; 513():297-313. PubMed ID: 22929775
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Using single-worm RNA sequencing to study C. elegans responses to pathogen infection.
    Wang AJ; Wibisono P; Geppert BM; Liu Y
    BMC Genomics; 2022 Sep; 23(1):653. PubMed ID: 36104659
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Decoupling the downstream effects of germline nuclear RNAi reveals that H3K9me3 is dispensable for heritable RNAi and the maintenance of endogenous siRNA-mediated transcriptional silencing in
    Kalinava N; Ni JZ; Peterman K; Chen E; Gu SG
    Epigenetics Chromatin; 2017; 10():6. PubMed ID: 28228846
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chromatin Immunoprecipitation in Chloroplasts.
    Wang W; Cheng L; Sun Q
    Curr Protoc; 2022 Jan; 2(1):e360. PubMed ID: 35077029
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Using Cleavage Under Targets and Tagmentation (CUT&Tag) Assay in Mouse Myoblast Research.
    Li Y; Wu X; Hu P
    J Vis Exp; 2024 Mar; (205):. PubMed ID: 38497648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.