BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35715225)

  • 1. Metal Ion Augmented Mussel Inspired Polydopamine Immobilized 3D Printed Osteoconductive Scaffolds for Accelerated Bone Tissue Regeneration.
    Ghorai SK; Dutta A; Roy T; Guha Ray P; Ganguly D; Ashokkumar M; Dhara S; Chattopadhyay S
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):28455-28475. PubMed ID: 35715225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lysophosphatidic Acid/Polydopamine-Modified nHA Composite Scaffolds for Enhanced Osteogenesis via Upregulating the Wnt/Beta-Catenin Pathway.
    Chen J; Qian Y; Li H; Zuo W; Sun W; Xing D; Zhou X
    ACS Appl Mater Interfaces; 2024 Mar; 16(11):13466-13480. PubMed ID: 38445450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bovine serum albumin-modified 3D printed alginate dialdehyde-gelatin scaffolds incorporating polydopamine/SiO
    Kim M; Schöbel L; Geske M; Boccaccini AR; Ghorbani F
    Int J Biol Macromol; 2024 Apr; 264(Pt 2):130666. PubMed ID: 38453119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced osteogenesis of 3D printed β-TCP scaffolds with Cissus Quadrangularis extract-loaded polydopamine coatings.
    Robertson SF; Bose S
    J Mech Behav Biomed Mater; 2020 Nov; 111():103945. PubMed ID: 32920263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wet 3D printing of biodegradable porous scaffolds to enable room-temperature deposition modeling of polymeric solutions for regeneration of articular cartilage.
    Yu X; Wang P; Gao J; Fu Y; Wang Q; Chen J; Chen S; Ding J
    Biofabrication; 2024 Apr; 16(3):. PubMed ID: 38569492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-printed near-infrared-light-responsive on-demand drug-delivery scaffold for bone regeneration.
    Qinyuan D; Zhuqing W; Qing L; Yunsong L; Ping Z; Xiao Z; Yuting N; Hao L; Yongsheng Z; Longwei L
    Biomater Adv; 2024 May; 159():213804. PubMed ID: 38412627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-printed porous tantalum artificial bone scaffolds: fabrication, properties, and applications.
    Yu H; Xu M; Duan Q; Li Y; Liu Y; Song L; Cheng L; Ying J; Zhao D
    Biomed Mater; 2024 May; 19(4):. PubMed ID: 38697199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vitro and In Vivo Evaluation of 3D Printed Poly(Ethylene Glycol) Dimethacrylate-Based Photocurable Hydrogel Platform for Bone Tissue Engineering.
    Unagolla JM; Gaihre B; Jayasuriya AC
    Macromol Biosci; 2024 Apr; 24(4):e2300414. PubMed ID: 38035771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D-printed nanohydroxyapatite/methylacrylylated silk fibroin scaffold for repairing rat skull defects.
    Huiwen W; Shuai L; Jia X; Shihao D; Kun W; Runhuai Y; Haisheng Q; Jun L
    J Biol Eng; 2024 Mar; 18(1):22. PubMed ID: 38515148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional-Printed Spherical Hollow Structural Scaffolds for Guiding Critical-Sized Bone Regeneration.
    Liu X; Gao J; Liu J; Cheng J; Han Z; Li Z; Chang Z; Zhang L; Li M; Tang P
    ACS Biomater Sci Eng; 2024 Apr; 10(4):2581-2594. PubMed ID: 38489227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Synergetic Effect of 3D Printing and Electrospinning Techniques in the Fabrication of Bone Scaffolds.
    Qi Y; Lv H; Huang Q; Pan G
    Ann Biomed Eng; 2024 Jun; 52(6):1518-1533. PubMed ID: 38530536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionalized chitosan hydrogel promotes osseointegration at the interface of3D printed titanium alloy scaffolds.
    Zhu C; Jia Y; Tang Y; Guo C; Xi J; Sun C; Li H; Wang W; Zhai Y; Zhu Y; Liu Y
    Int J Biol Macromol; 2024 May; 266(Pt 1):131169. PubMed ID: 38554899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mussel-Inspired Gold Nanoparticle and PLGA/L-Lysine-g-Graphene Oxide Composite Scaffolds for Bone Defect Repair.
    Fu C; Jiang Y; Yang X; Wang Y; Ji W; Jia G
    Int J Nanomedicine; 2021; 16():6693-6718. PubMed ID: 34621123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of nanotechnology in 3D printed tissue engineering scaffolds.
    Laird NZ; Acri TM; Chakka JL; Quarterman JC; Malkawi WI; Elangovan S; Salem AK
    Eur J Pharm Biopharm; 2021 Apr; 161():15-28. PubMed ID: 33549706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization.
    Fitzpatrick V; Martín-Moldes Z; Deck A; Torres-Sanchez R; Valat A; Cairns D; Li C; Kaplan DL
    Biomaterials; 2021 Sep; 276():120995. PubMed ID: 34256231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polydopamine-mediated immobilization of BMP-2 onto electrospun nanofibers enhances bone regeneration.
    Chen Z; Li J; Wang Z; Chen Y; Jin M; Chen S; Xie J; Ge S; He H; Xu J; Wu F
    Nanotechnology; 2024 May; 35(32):. PubMed ID: 38688249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioactive Conjugated Polymer-Based Biodegradable 3D Bionic Scaffolds for Facilitating Bone Defect Repair.
    Yuan Q; Bao B; Li M; Li L; Zhang X; Tang Y
    Adv Healthc Mater; 2024 Mar; 13(7):e2302818. PubMed ID: 37989510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing of a Multifunctional 3D-Printed Biomimetic Theragenerative Aerogel Scaffold via Mussel-Inspired Chemistry: Bioactive Glass Nanofiber-Incorporated Self-Assembled Silk Fibroin with Antibacterial, Antiosteosarcoma, and Osteoinductive Properties.
    Abie N; Ünlü C; Pinho AR; Gomes MC; Remmler T; Herb M; Grumme D; Tabesh E; Shahbazi MA; Mathur S; Mano JF; Maleki H
    ACS Appl Mater Interfaces; 2024 Mar; ():. PubMed ID: 38546538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(Dopamine)-Assisted Immobilization of Xu Duan on 3D Printed Poly(Lactic Acid) Scaffolds to Up-Regulate Osteogenic and Angiogenic Markers of Bone Marrow Stem Cells.
    Yeh CH; Chen YW; Shie MY; Fang HY
    Materials (Basel); 2015 Jul; 8(7):4299-4315. PubMed ID: 28793441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomineralized fluorocanasite-reinforced biocomposite scaffolds demonstrate expedited osteointegration of critical-sized bone defects.
    Vyas A; Mondal S; Kumawat VS; Ghosh SB; Mishra D; Sen J; Khare D; Dubey AK; Nandi SK; Bandyopadhyay-Ghosh S
    J Biomed Mater Res B Appl Biomater; 2024 Jan; 112(1):e35352. PubMed ID: 37982372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.