BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35715259)

  • 1. Multi-fidelity surrogate modeling through hybrid machine learning for biomechanical and finite element analysis of soft tissues.
    Sajjadinia SS; Carpentieri B; Shriram D; Holzapfel GA
    Comput Biol Med; 2022 Sep; 148():105699. PubMed ID: 35715259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of the 3D Hyperelastic Behavior of Ventricular Myocardium using a Finite-Element Based Neural-Network Approach.
    Zhang W; Li DS; Bui-Thanh T; Sacks MS
    Comput Methods Appl Mech Eng; 2022 May; 394():. PubMed ID: 35422534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural Network Approaches for Soft Biological Tissue and Organ Simulations.
    Sacks MS; Motiwale S; Goodbrake C; Zhang W
    J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 36193891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-fidelity information fusion with concatenated neural networks.
    Pawar S; San O; Vedula P; Rasheed A; Kvamsdal T
    Sci Rep; 2022 Apr; 12(1):5900. PubMed ID: 35393511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing efficiency and accuracy of magnetic interaction calculations in colloidal simulation through machine learning.
    Pan C; Mahmoudabadbozchelou M; Duan X; Benneyan JC; Jamali S; Erb RM
    J Colloid Interface Sci; 2022 Apr; 611():29-38. PubMed ID: 34929436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid Modelling by Machine Learning Corrections of Analytical Model Predictions towards High-Fidelity Simulation Solutions.
    Bock FE; Keller S; Huber N; Klusemann B
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33920078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-speed nonlinear finite element analysis for surgical simulation using graphics processing units.
    Taylor ZA; Cheng M; Ourselin S
    IEEE Trans Med Imaging; 2008 May; 27(5):650-63. PubMed ID: 18450538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time nonlinear finite element analysis for surgical simulation using graphics processing units.
    Taylor ZA; Cheng M; Ourselin S
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):701-8. PubMed ID: 18051120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing Mechanical Metamodels With a Generative Model-Based Augmented Training Dataset.
    Kobeissi H; Mohammadzadeh S; Lejeune E
    J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 35767343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning modeling of lung mechanics: Assessing the variability and propagation of uncertainty in respiratory-system compliance and airway resistance.
    Barahona J; Sahli Costabal F; Hurtado DE
    Comput Methods Programs Biomed; 2024 Jan; 243():107888. PubMed ID: 37948910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel machine learning based computational framework for homogenization of heterogeneous soft materials: application to liver tissue.
    Hashemi MS; Baniassadi M; Baghani M; George D; Remond Y; Sheidaei A
    Biomech Model Mechanobiol; 2020 Jun; 19(3):1131-1142. PubMed ID: 31823106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using dropout based active learning and surrogate models in the inverse viscoelastic parameter identification of human brain tissue.
    Hinrichsen J; Ferlay C; Reiter N; Budday S
    Front Physiol; 2024; 15():1321298. PubMed ID: 38322614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poroelastic Modeling of Highly Hydrated Collagen Hydrogels: Experimental Results vs. Numerical Simulation With Custom and Commercial Finite Element Solvers.
    Castro APG; Yao J; Battisti T; Lacroix D
    Front Bioeng Biotechnol; 2018; 6():142. PubMed ID: 30406091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A deep learning-based hybrid approach for the solution of multiphysics problems in electrosurgery.
    Han Z; Rahul ; De S
    Comput Methods Appl Mech Eng; 2019 Dec; 357():. PubMed ID: 32863455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive surrogate modeling for expedited estimation of nonlinear tissue properties through inverse finite element analysis.
    Halloran JP; Erdemir A
    Ann Biomed Eng; 2011 Sep; 39(9):2388-97. PubMed ID: 21544674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic Integration of Deep Neural Networks and Finite Element Method with Applications of Nonlinear Large Deformation Biomechanics.
    Liang L; Liu M; Elefteriades J; Sun W
    Comput Methods Appl Mech Eng; 2023 Nov; 416():. PubMed ID: 38370344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Machine Learning Approach as a Surrogate for a Finite Element Analysis: Status of Research and Application to One Dimensional Systems.
    Vurtur Badarinath P; Chierichetti M; Davoudi Kakhki F
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33673605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data-driven Modeling of the Mechanical Behavior of Anisotropic Soft Biological Tissue.
    Tac V; Sree VD; Rausch MK; Tepole AB
    Eng Comput; 2022 Oct; 38(5):4167-4182. PubMed ID: 38031587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model order reduction approach to create patient-specific mechanical models of human liver in computational medicine applications.
    Lauzeral N; Borzacchiello D; Kugler M; George D; RĂ©mond Y; Hostettler A; Chinesta F
    Comput Methods Programs Biomed; 2019 Mar; 170():95-106. PubMed ID: 30712607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An adversarial machine learning framework and biomechanical model-guided approach for computing 3D lung tissue elasticity from end-expiration 3DCT.
    Santhanam AP; Stiehl B; Lauria M; Hasse K; Barjaktarevic I; Goldin J; Low DA
    Med Phys; 2021 Feb; 48(2):667-675. PubMed ID: 32449519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.