BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35715259)

  • 21. Simulation of planar soft tissues using a structural constitutive model: Finite element implementation and validation.
    Fan R; Sacks MS
    J Biomech; 2014 Jun; 47(9):2043-54. PubMed ID: 24746842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical implementation of an osmo-poro-visco-hyperelastic finite element solver: application to the intervertebral disc.
    Castro APG; Alves JL
    Comput Methods Biomech Biomed Engin; 2021 Apr; 24(5):538-550. PubMed ID: 33111576
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep Learning Approaches to Surrogates for Solving the Diffusion Equation for Mechanistic Real-World Simulations.
    Toledo-MarĂ­n JQ; Fox G; Sluka JP; Glazier JA
    Front Physiol; 2021; 12():667828. PubMed ID: 34248661
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physics-constrained deep active learning for spatiotemporal modeling of cardiac electrodynamics.
    Xie J; Yao B
    Comput Biol Med; 2022 Jul; 146():105586. PubMed ID: 35751197
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues.
    Sun W; Sacks MS
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reinforcement learning coupled with finite element modeling for facial motion learning.
    Nguyen DP; Ho Ba Tho MC; Dao TT
    Comput Methods Programs Biomed; 2022 Jun; 221():106904. PubMed ID: 35636356
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancing physiologic simulations using supervised learning on coarse mesh solutions.
    Kolandaivelu K; O'Brien CC; Shazly T; Edelman ER; Kolachalama VB
    J R Soc Interface; 2015 Mar; 12(104):20141073. PubMed ID: 25652458
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integration of Surrogate Huxley Muscle Model into Finite Element Solver for Simulation of the Cardiac Cycle.
    Milicevic B; Simic V; Milosevic M; Ivanovic M; Stojanovic B; Kojic M; Filipovic N
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3943-3946. PubMed ID: 36086276
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A machine learning approach for magnetic resonance image-based mouse brain modeling and fast computation in controlled cortical impact.
    Lai C; Chen Y; Wang T; Liu J; Wang Q; Du Y; Feng Y
    Med Biol Eng Comput; 2020 Nov; 58(11):2835-2844. PubMed ID: 32954460
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An integrated finite element method and machine learning algorithm for brain morphology prediction.
    Chavoshnejad P; Chen L; Yu X; Hou J; Filla N; Zhu D; Liu T; Li G; Razavi MJ; Wang X
    Cereb Cortex; 2023 Jul; 33(15):9354-9366. PubMed ID: 37288479
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mixing neural networks, continuation and symbolic computation to solve parametric systems of non linear equations.
    Merlet JP
    Neural Netw; 2024 Aug; 176():106316. PubMed ID: 38653125
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Surrogate Model Based on a Finite Element Model of Abdomen for Real-Time Visualisation of Tissue Stress during Physical Examination Training.
    Leong F; Lai CY; Khosroshahi SF; He L; de Lusignan S; Nanayakkara T; Ghajari M
    Bioengineering (Basel); 2022 Nov; 9(11):. PubMed ID: 36421088
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D multi-physics uncertainty quantification using physics-based machine learning.
    Degen D; Cacace M; Wellmann F
    Sci Rep; 2022 Oct; 12(1):17491. PubMed ID: 36261601
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Propagation of uncertainty in the mechanical and biological response of growing tissues using multi-fidelity Gaussian process regression.
    Lee T; Bilionis I; Tepole AB
    Comput Methods Appl Mech Eng; 2020 Feb; 359():. PubMed ID: 32863456
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-dimensional surrogate contact modeling for computationally efficient dynamic simulation of total knee replacements.
    Lin YC; Haftka RT; Queipo NV; Fregly BJ
    J Biomech Eng; 2009 Apr; 131(4):041010. PubMed ID: 19275439
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Can machine learning accelerate soft material parameter identification from complex mechanical test data?
    Kakaletsis S; Lejeune E; Rausch MK
    Biomech Model Mechanobiol; 2023 Feb; 22(1):57-70. PubMed ID: 36229697
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A finite element evaluation of mechanical function for 3 distal extension partial dental prosthesis designs with a 3-dimensional nonlinear method for modeling soft tissue.
    Nakamura Y; Kanbara R; Ochiai KT; Tanaka Y
    J Prosthet Dent; 2014 Oct; 112(4):972-80. PubMed ID: 24819523
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Hybrid Finite Element-Machine Learning Backward Training Approach to Analyze the Optimal Machining Conditions.
    George K; Kannan S; Raza A; Pervaiz S
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772243
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic finite element modeling of poroviscoelastic soft tissue.
    Yang Z; Smolinski P
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):7-16. PubMed ID: 16880152
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interfacing finite elements with deep neural operators for fast multiscale modeling of mechanics problems.
    Yin M; Zhang E; Yu Y; Karniadakis GE
    Comput Methods Appl Mech Eng; 2022 Dec; 402():. PubMed ID: 37384215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.