These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 35715431)

  • 1. Lightsheet optical tweezer (LOT) for optical manipulation of microscopic particles and live cells.
    Mondal PP; Baro N; Singh A; Joshi P; Basumatary J
    Sci Rep; 2022 Jun; 12(1):10229. PubMed ID: 35715431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers.
    Sarshar M; Wong WT; Anvari B
    J Biomed Opt; 2014; 19(11):115001. PubMed ID: 25375348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical trapping of microparticles with two tilted-focused laser beams.
    Meng C; Shao M; Zhang XF; Zhang LS; Chen D; Zhong MC
    Rev Sci Instrum; 2023 Jul; 94(7):. PubMed ID: 37409910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and characterization of machined multi-core fiber tweezers for single cell manipulation.
    Anastasiadi G; Leonard M; Paterson L; Macpherson WN
    Opt Express; 2018 Feb; 26(3):3557-3567. PubMed ID: 29401883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical concatenation of a large number of beads with a single-beam optical tweezer.
    Avila R; Ascencio-Rodríguez J; Tapia-Merino D; Rodríguez-Herrera OG; González-Suárez A
    Opt Lett; 2017 Apr; 42(7):1393-1396. PubMed ID: 28362777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculation and measurement of trapping stiffness in femtosecond optical tweezers.
    Li Y; Qin Y; Wang H; Huang L; Guo H; Jiang Y
    Opt Express; 2024 Mar; 32(7):12358-12367. PubMed ID: 38571060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical trapping of nanoparticles.
    Bergeron J; Zehtabi-Oskuie A; Ghaffari S; Pang Y; Gordon R
    J Vis Exp; 2013 Jan; (71):e4424. PubMed ID: 23354173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fiber-integrated optical tweezers for ballistic transport and trapping yeast cells.
    Deng H; Chen D; Wang R; Li F; Luo Z; Deng S; Yin J; Yu L; Zhang W; Yuan L
    Nanoscale; 2022 May; 14(18):6941-6948. PubMed ID: 35466971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pitch-rotational manipulation of single cells and particles using single-beam thermo-optical tweezers.
    Kumar S; Gunaseelan M; Vaippully R; Kumar A; Ajith M; Vaidya G; Dutta S; Roy B
    Biomed Opt Express; 2020 Jul; 11(7):3555-3566. PubMed ID: 33014551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Position clamping in a holographic counterpropagating optical trap.
    Bowman R; Jesacher A; Thalhammer G; Gibson G; Ritsch-Marte M; Padgett M
    Opt Express; 2011 May; 19(10):9908-14. PubMed ID: 21643247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tomographic imaging of a suspending single live cell using optical tweezer-combined full-field optical coherence tomography.
    Choi WJ; Park KS; Eom TJ; Oh MK; Lee BH
    Opt Lett; 2012 Jul; 37(14):2784-6. PubMed ID: 22825133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials.
    Serey X; Mandal S; Erickson D
    Nanotechnology; 2010 Jul; 21(30):305202. PubMed ID: 20603537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of an optical trap for study of host-pathogen interactions for dynamic live cell imaging.
    Tam JM; Castro CE; Heath RJ; Mansour MK; Cardenas ML; Xavier RJ; Lang MJ; Vyas JM
    J Vis Exp; 2011 Jul; (53):. PubMed ID: 21841755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Axial optical trapping forces on two particles trapped simultaneously by optical tweezers.
    Xu S; Li Y; Lou L
    Appl Opt; 2005 May; 44(13):2667-72. PubMed ID: 15881076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An opto-thermal approach for rotating a trapped core-shell magnetic microparticle with patchy shell.
    Bai W; Shao M; Zhou J; Zhao Q; Ji F; Zhong MC
    Rev Sci Instrum; 2022 Aug; 93(8):084902. PubMed ID: 36050094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamental Limits of Optical Tweezer Nanoparticle Manipulation Speeds.
    Melzer JE; McLeod E
    ACS Nano; 2018 Mar; 12(3):2440-2447. PubMed ID: 29400940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bessel beam optical tweezers for manipulating superparamagnetic beads.
    Andrade UMS; Garcia AM; Rocha MS
    Appl Opt; 2021 Apr; 60(12):3422-3429. PubMed ID: 33983247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Line optical tweezers as controllable micromachines: techniques and emerging trends.
    Shen Y; Weitz DA; Forde NR; Shayegan M
    Soft Matter; 2022 Jul; 18(29):5359-5365. PubMed ID: 35819100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring the complete force field of an optical trap.
    Jahnel M; Behrndt M; Jannasch A; Schäffer E; Grill SW
    Opt Lett; 2011 Apr; 36(7):1260-2. PubMed ID: 21479051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.