These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 35715462)
1. Analysis of MRI and CT-based radiomics features for personalized treatment in locally advanced rectal cancer and external validation of published radiomics models. Shahzadi I; Zwanenburg A; Lattermann A; Linge A; Baldus C; Peeken JC; Combs SE; Diefenhardt M; Rödel C; Kirste S; Grosu AL; Baumann M; Krause M; Troost EGC; Löck S Sci Rep; 2022 Jun; 12(1):10192. PubMed ID: 35715462 [TBL] [Abstract][Full Text] [Related]
2. Prognostic prediction value of the clinical-radiomics tumour-stroma ratio in locally advanced rectal cancer. Cai C; Hu T; Rong Z; Gong J; Tong T Eur J Radiol; 2024 Jan; 170():111254. PubMed ID: 38091662 [TBL] [Abstract][Full Text] [Related]
3. MRI radiomics signature to predict lymph node metastasis after neoadjuvant chemoradiation therapy in locally advanced rectal cancer. Fang Z; Pu H; Chen XL; Yuan Y; Zhang F; Li H Abdom Radiol (NY); 2023 Jul; 48(7):2270-2283. PubMed ID: 37085730 [TBL] [Abstract][Full Text] [Related]
4. Multi-modal radiomics model to predict treatment response to neoadjuvant chemotherapy for locally advanced rectal cancer. Li ZY; Wang XD; Li M; Liu XJ; Ye Z; Song B; Yuan F; Yuan Y; Xia CC; Zhang X; Li Q World J Gastroenterol; 2020 May; 26(19):2388-2402. PubMed ID: 32476800 [TBL] [Abstract][Full Text] [Related]
5. MRI-based Multiregional Radiomics for Pretreatment Prediction of Distant Metastasis After Neoadjuvant Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer. Zhao R; Wan L; Chen S; Peng W; Liu X; Wang S; Li L; Zhang H Acad Radiol; 2024 Apr; 31(4):1367-1377. PubMed ID: 37802671 [TBL] [Abstract][Full Text] [Related]
6. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Cui Y; Yang X; Shi Z; Yang Z; Du X; Zhao Z; Cheng X Eur Radiol; 2019 Mar; 29(3):1211-1220. PubMed ID: 30128616 [TBL] [Abstract][Full Text] [Related]
7. Radiomics of locally advanced rectal cancer: machine learning-based prediction of response to neoadjuvant chemoradiotherapy using pre-treatment sagittal T2-weighted MRI. Yardimci AH; Kocak B; Sel I; Bulut H; Bektas CT; Cin M; Dursun N; Bektas H; Mermut O; Yardimci VH; Kilickesmez O Jpn J Radiol; 2023 Jan; 41(1):71-82. PubMed ID: 35962933 [TBL] [Abstract][Full Text] [Related]
8. [A prediction model of pathological complete response in patients with locally advanced rectal cancer after PD-1 antibody combined with total neoadjuvant chemoradiotherapy based on MRI radiomics]. Zhang XY; Zhu HT; Li XT; Li YJ; Li ZW; Wang WH; Wu AW; Sun YS; Zhang L Zhonghua Wei Chang Wai Ke Za Zhi; 2022 Mar; 25(3):228-234. PubMed ID: 35340172 [No Abstract] [Full Text] [Related]
9. MRI Radiomics Model Predicts Pathologic Complete Response of Rectal Cancer Following Chemoradiotherapy. Shin J; Seo N; Baek SE; Son NH; Lim JS; Kim NK; Koom WS; Kim S Radiology; 2022 May; 303(2):351-358. PubMed ID: 35133200 [TBL] [Abstract][Full Text] [Related]
10. External validation and comparison of MR-based radiomics models for predicting pathological complete response in locally advanced rectal cancer: a two-centre, multi-vendor study. Wei Q; Chen Z; Tang Y; Chen W; Zhong L; Mao L; Hu S; Wu Y; Deng K; Yang W; Liu X Eur Radiol; 2023 Mar; 33(3):1906-1917. PubMed ID: 36355199 [TBL] [Abstract][Full Text] [Related]
11. Predicting pathological complete response by comparing MRI-based radiomics pre- and postneoadjuvant radiotherapy for locally advanced rectal cancer. Li Y; Liu W; Pei Q; Zhao L; Güngör C; Zhu H; Song X; Li C; Zhou Z; Xu Y; Wang D; Tan F; Yang P; Pei H Cancer Med; 2019 Dec; 8(17):7244-7252. PubMed ID: 31642204 [TBL] [Abstract][Full Text] [Related]
12. Does restaging MRI radiomics analysis improve pathological complete response prediction in rectal cancer patients? A prognostic model development. Chiloiro G; Cusumano D; de Franco P; Lenkowicz J; Boldrini L; Carano D; Barbaro B; Corvari B; Dinapoli N; Giraffa M; Meldolesi E; Manfredi R; Valentini V; Gambacorta MA Radiol Med; 2022 Jan; 127(1):11-20. PubMed ID: 34725772 [TBL] [Abstract][Full Text] [Related]
13. Machine learning-based response assessment in patients with rectal cancer after neoadjuvant chemoradiotherapy: radiomics analysis for assessing tumor regression grade using T2-weighted magnetic resonance images. Lee YD; Kim HG; Seo M; Moon SK; Park SJ; You MW Int J Colorectal Dis; 2024 May; 39(1):78. PubMed ID: 38789861 [TBL] [Abstract][Full Text] [Related]
14. Applicability of a pathological complete response magnetic resonance-based radiomics model for locally advanced rectal cancer in intercontinental cohort. Boldrini L; Lenkowicz J; Orlandini LC; Yin G; Cusumano D; Chiloiro G; Dinapoli N; Peng Q; Casà C; Gambacorta MA; Valentini V; Lang J Radiat Oncol; 2022 Apr; 17(1):78. PubMed ID: 35428267 [TBL] [Abstract][Full Text] [Related]
15. Selecting Candidates for Organ-Preserving Strategies After Neoadjuvant Chemoradiotherapy for Rectal Cancer: Development and Validation of a Model Integrating MRI Radiomics and Pathomics. Wan L; Sun Z; Peng W; Wang S; Li J; Zhao Q; Wang S; Ouyang H; Zhao X; Zou S; Zhang H J Magn Reson Imaging; 2022 Oct; 56(4):1130-1142. PubMed ID: 35142001 [TBL] [Abstract][Full Text] [Related]
16. Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicentre observational study. Feng L; Liu Z; Li C; Li Z; Lou X; Shao L; Wang Y; Huang Y; Chen H; Pang X; Liu S; He F; Zheng J; Meng X; Xie P; Yang G; Ding Y; Wei M; Yun J; Hung MC; Zhou W; Wahl DR; Lan P; Tian J; Wan X Lancet Digit Health; 2022 Jan; 4(1):e8-e17. PubMed ID: 34952679 [TBL] [Abstract][Full Text] [Related]
17. Local tuning of radiomics-based model for predicting pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Tang B; Lenkowicz J; Peng Q; Boldrini L; Hou Q; Dinapoli N; Valentini V; Diao P; Yin G; Orlandini LC BMC Med Imaging; 2022 Mar; 22(1):44. PubMed ID: 35287607 [TBL] [Abstract][Full Text] [Related]
18. MRI-based radiomics to predict response in locally advanced rectal cancer: comparison of manual and automatic segmentation on external validation in a multicentre study. Defeudis A; Mazzetti S; Panic J; Micilotta M; Vassallo L; Giannetto G; Gatti M; Faletti R; Cirillo S; Regge D; Giannini V Eur Radiol Exp; 2022 May; 6(1):19. PubMed ID: 35501512 [TBL] [Abstract][Full Text] [Related]
19. Radiomics signature as a new biomarker for preoperative prediction of neoadjuvant chemoradiotherapy response in locally advanced rectal cancer. Zhang Z; Jiang X; Zhang R; Yu T; Liu S; Luo Y Diagn Interv Radiol; 2021 May; 27(3):308-314. PubMed ID: 34003118 [TBL] [Abstract][Full Text] [Related]
20. Pretreatment MRI-Based Radiomics for Prediction of Rectal Cancer Outcome: A Discovery and Validation Study. Huang H; Han L; Guo J; Zhang Y; Lin S; Chen S; Lin X; Cheng C; Guo Z; Qiu Y Acad Radiol; 2024 May; 31(5):1878-1888. PubMed ID: 37996362 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]