These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 35715472)
1. Strontium doped bioglass incorporated hydrogel-based scaffold for amplified bone tissue regeneration. Manoochehri H; Ghorbani M; Moosazadeh Moghaddam M; Nourani MR; Makvandi P; Sharifi E Sci Rep; 2022 Jun; 12(1):10160. PubMed ID: 35715472 [TBL] [Abstract][Full Text] [Related]
2. Zinc and Strontium-Substituted Bioactive Glass Nanoparticle/Alginate Composites Scaffold for Bone Regeneration. Naruphontjirakul P; Panpisut P; Patntirapong S Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047122 [TBL] [Abstract][Full Text] [Related]
3. Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis. Ye Q; Zhang Y; Dai K; Chen X; Read HM; Zeng L; Hang F J Mater Sci Mater Med; 2020 Aug; 31(9):77. PubMed ID: 32816067 [TBL] [Abstract][Full Text] [Related]
4. Fabrication and Evaluation of Alginate/Bacterial Cellulose Nanocrystals-Chitosan-Gelatin Composite Scaffolds. Li Z; Chen X; Bao C; Liu C; Liu C; Li D; Yan H; Lin Q Molecules; 2021 Aug; 26(16):. PubMed ID: 34443588 [TBL] [Abstract][Full Text] [Related]
5. Nanofibrous Hydrogel Nanocomposite Based on Strontium-Doped Bioglass Nanofibers for Bone Tissue Engineering Applications. Zare S; Mohammadpour M; Izadi Z; Ghazanfari S; Nadri S; Samadian H Biology (Basel); 2022 Oct; 11(10):. PubMed ID: 36290377 [TBL] [Abstract][Full Text] [Related]
6. Bioglass/alginate composite hydrogel beads as cell carriers for bone regeneration. Zeng Q; Han Y; Li H; Chang J J Biomed Mater Res B Appl Biomater; 2014 Jan; 102(1):42-51. PubMed ID: 23847006 [TBL] [Abstract][Full Text] [Related]
7. Alginate-Sr/Mg Containing Bioactive Glass Scaffolds: The Characterization of a New 3D Composite for Bone Tissue Engineering. Guagnini B; Medagli B; Zumbo B; Cannillo V; Turco G; Porrelli D; Bellucci D J Funct Biomater; 2024 Jul; 15(7):. PubMed ID: 39057304 [TBL] [Abstract][Full Text] [Related]
8. Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering. Singh BN; Veeresh V; Mallick SP; Jain Y; Sinha S; Rastogi A; Srivastava P Int J Biol Macromol; 2019 Jul; 133():817-830. PubMed ID: 31002908 [TBL] [Abstract][Full Text] [Related]
9. Chitosan-polyethylene oxide/clay-alginate nanofiber hydrogel scaffold for bone tissue engineering: Preparation, physical characterization, and biomimetic mineralization. Hakimi F; Jafari H; Hashemikia S; Shabani S; Ramazani A Int J Biol Macromol; 2023 Apr; 233():123453. PubMed ID: 36709816 [TBL] [Abstract][Full Text] [Related]
10. Alginate-containing 3D-printed hydrogel scaffolds incorporated with strontium promotes vascularization and bone regeneration. Miao A; Li Q; Tang G; Lu Q Int J Biol Macromol; 2024 Jul; 273(Pt 1):133038. PubMed ID: 38857724 [TBL] [Abstract][Full Text] [Related]
11. In situ fabrication of a composite hydrogel with tunable mechanical properties for cartilage tissue engineering. Ma F; Ge Y; Liu N; Pang X; Shen X; Tang B J Mater Chem B; 2019 Apr; 7(15):2463-2473. PubMed ID: 32255123 [TBL] [Abstract][Full Text] [Related]
12. Resorbable PCEC/gelatin-bismuth doped bioglass-graphene oxide bilayer membranes for guided bone regeneration. Pazarçeviren AE; Evis Z; Keskin D; Tezcaner A Biomed Mater; 2019 Apr; 14(3):035018. PubMed ID: 30665204 [TBL] [Abstract][Full Text] [Related]
13. Regulating Preparation Of Functional Alginate-Chitosan Three-Dimensional Scaffold For Skin Tissue Engineering. Zhu T; Jiang J; Zhao J; Chen S; Yan X Int J Nanomedicine; 2019; 14():8891-8903. PubMed ID: 32009786 [TBL] [Abstract][Full Text] [Related]
14. An approach for mechanical property optimization of cell-laden alginate-gelatin composite bioink with bioactive glass nanoparticles. Wei L; Li Z; Li J; Zhang Y; Yao B; Liu Y; Song W; Fu X; Wu X; Huang S J Mater Sci Mater Med; 2020 Nov; 31(11):103. PubMed ID: 33140191 [TBL] [Abstract][Full Text] [Related]
15. Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering. Xu C; Su P; Chen X; Meng Y; Yu W; Xiang AP; Wang Y Biomaterials; 2011 Feb; 32(4):1051-8. PubMed ID: 20980051 [TBL] [Abstract][Full Text] [Related]
16. [In vitro study on injectable alginate-strontium hydrogel for bone tissue engineering]. Tu Y; Wu T; Ye A; Xu J; Guo F; Cheng X Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Dec; 27(12):1499-505. PubMed ID: 24640374 [TBL] [Abstract][Full Text] [Related]
17. Effects of strontium ions with potential antibacterial activity on in vivo bone regeneration. Baheiraei N; Eyni H; Bakhshi B; Najafloo R; Rabiee N Sci Rep; 2021 Apr; 11(1):8745. PubMed ID: 33888790 [TBL] [Abstract][Full Text] [Related]
18. Synergistic effect of strontium, bioactive glass and nano-hydroxyapatite promotes bone regeneration of critical-sized radial bone defects. Oryan A; Baghaban Eslaminejad M; Kamali A; Hosseini S; Sayahpour FA; Baharvand H J Biomed Mater Res B Appl Biomater; 2019 Jan; 107(1):50-64. PubMed ID: 29468802 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional porous polycaprolactone/chitosan/bioactive glass scaffold for bone tissue engineering. Joy K; David SS; Shanmugavadivu A; Selvamurugan N; Mani P J Biomater Sci Polym Ed; 2024 Dec; 35(18):2829-2844. PubMed ID: 39185697 [TBL] [Abstract][Full Text] [Related]
20. 3D-printed titanium scaffolds loaded with gelatin hydrogel containing strontium-doped silver nanoparticles promote osteoblast differentiation and antibacterial activity for bone tissue engineering. Anushikaa R; Ganesh SS; Victoria VSS; Shanmugavadivu A; Lavanya K; Lekhavadhani S; Selvamurugan N Biotechnol J; 2024 Aug; 19(8):e2400288. PubMed ID: 39115337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]