These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 3571565)

  • 1. Influences of exercise-stress and adrenaline upon intra- and extracellular acid-base status, electrolyte composition and respiratory properties of blood in tench (Tinca tinca) at different seasons.
    Jensen FB
    J Comp Physiol B; 1987; 157(1):51-60. PubMed ID: 3571565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of exercise stress on acid-base balance and respiratory function in blood of the teleost Tinca tinca.
    Jensen FB; Nikinmaa M; Weber RE
    Respir Physiol; 1983 Mar; 51(3):291-301. PubMed ID: 6844761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seasonal and maternal effects on acid-base, l-lactate, electrolyte, and hematological status of 205 dairy calves born to eutocic dams.
    Kovács L; Kézér FL; Albert E; Ruff F; Szenci O
    J Dairy Sci; 2017 Sep; 100(9):7534-7543. PubMed ID: 28711257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Red-cell pH in tench. Interacting effects of cellular nucleoside triphosphates, Hb-oxygenation and extracellular pH.
    Jensen FB
    Acta Physiol Scand; 1988 Mar; 132(3):431-7. PubMed ID: 3227884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acid-base regulation and blood gas transport following exhaustive exercise in an agnathan, the sea lamprey Petromyzon marinus.
    Tufts BL
    J Exp Biol; 1991 Sep; 159():371-85. PubMed ID: 1940770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of red blood cell metabolism in rainbow trout after exhaustive exercise.
    Wood CM; Walsh PJ; Thomas S; Perry SF
    J Exp Biol; 1990 Nov; 154():491-507. PubMed ID: 2126030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of adrenaline and blood gas conditions on red cell volume and intra-erythrocytic electrolytes in the carp, Cyprinus carpio.
    Fuchs DA; Albers C
    J Exp Biol; 1988 Jul; 137():457-76. PubMed ID: 3145321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sprint training enhances ionic regulation during intense exercise in men.
    McKenna MJ; Heigenhauser GJ; McKelvie RS; MacDougall JD; Jones NL
    J Physiol; 1997 Jun; 501 ( Pt 3)(Pt 3):687-702. PubMed ID: 9218228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sympathetic-adrenergic activity and acid-base regulation under acute physical stress in type I (insulin-dependent) diabetic children.
    Yasar SA; Tulassay T; Madácsy L; Körner A; Szücs L; Nagy I; Szabó A; Miltényi M
    Horm Res; 1994; 42(3):110-5. PubMed ID: 7995614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. White sturgeon (Acipenser transmontanus) acid-base regulation differs in response to different types of acidoses.
    Shartau RB; Baker DW; Brauner CJ
    J Comp Physiol B; 2017 Oct; 187(7):985-994. PubMed ID: 28283796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissociation between lactate and proton exchange in muscle during intense exercise in man.
    Bangsbo J; Juel C; Hellsten Y; Saltin B
    J Physiol; 1997 Oct; 504 ( Pt 2)(Pt 2):489-99. PubMed ID: 9365920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of nitrite exposure on blood respiratory properties, acid-base and electrolyte regulation in the carp (Cyprinus carpio).
    Jensen FB; Andersen NA; Heisler N
    J Comp Physiol B; 1987; 157(5):533-41. PubMed ID: 3693620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated responses to exhaustive exercise and recovery in rainbow trout white muscle: acid-base, phosphogen, carbohydrate, lipid, ammonia, fluid volume and electrolyte metabolism.
    Wang Y; Heigenhauser GJ; Wood CM
    J Exp Biol; 1994 Oct; 195():227-58. PubMed ID: 7964413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport.
    Jensen FB
    Acta Physiol Scand; 2004 Nov; 182(3):215-27. PubMed ID: 15491402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of exhausting exercise and catecholamines on K+ balance, acid-base status and blood respiratory properties in carp.
    Knudsen PK; Jensen FB
    Comp Biochem Physiol A Mol Integr Physiol; 1998 Jan; 119(1):301-7. PubMed ID: 11253799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arterial blood gases and acid-base status of dogs during graded dynamic exercise.
    Musch TI; Friedman DB; Haidet GC; Stray-Gundersen J; Waldrop TG; Ordway GA
    J Appl Physiol (1985); 1986 Nov; 61(5):1914-9. PubMed ID: 3096950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control and consequences of adrenergic activation of red blood cell Na+/H+ exchange on blood oxygen and carbon dioxide transport in fish.
    Thomas S; Perry SF
    J Exp Zool; 1992 Aug; 263(2):160-75. PubMed ID: 1323642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pronounced influence of Hb-O2 saturation on red cell pH in tench blood in vivo and in vitro.
    Jensen FB
    J Exp Zool; 1986 Apr; 238(1):119-24. PubMed ID: 3711816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acid-base and electrolyte balance after exhausting exercise in endurance-trained and sprint-trained subjects.
    Medbø JI; Sejersted OM
    Acta Physiol Scand; 1985 Sep; 125(1):97-109. PubMed ID: 4050490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An analysis of changes in blood pH following exhausting activity in the starry flounder, Platichthys stellatus.
    Wood CM; McMahon BR; McDonald DG
    J Exp Biol; 1977 Aug; 69():173-85. PubMed ID: 908908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.