BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35715660)

  • 41. Impact of temperature shift on gill physiology during smoltification of Atlantic salmon smolts (Salmo salar L.).
    Bernard B; Leguen I; Mandiki SNM; Cornet V; Redivo B; Kestemont P
    Comp Biochem Physiol A Mol Integr Physiol; 2020 Jun; 244():110685. PubMed ID: 32165323
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Differential gene expression during smoltification of Atlantic salmon (Salmo salar L.): a first large-scale microarray study.
    Seear PJ; Carmichael SN; Talbot R; Taggart JB; Bron JE; Sweeney GE
    Mar Biotechnol (NY); 2010 Apr; 12(2):126-40. PubMed ID: 19585168
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Both seawater acclimation and environmental ammonia exposure lead to increases in mRNA expression and protein abundance of Na⁺:K⁺:2Cl⁻ cotransporter in the gills of the climbing perch, Anabas testudineus.
    Loong AM; Chew SF; Wong WP; Lam SH; Ip YK
    J Comp Physiol B; 2012 May; 182(4):491-506. PubMed ID: 22179410
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Plasma growth hormone-binding protein levels in Atlantic salmon Salmo salar during smoltification and seawater transfer.
    Einarsdóttir IE; Gong N; Jönsson E; Sundh H; Hasselberg-Frank L; Nilsen TO; Stefansson SO; Sundell K; Björnsson BT
    J Fish Biol; 2014 Oct; 85(4):1279-96. PubMed ID: 25159100
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Long-term effects of photoperiod, temperature and their interaction on growth, gill Na⁺, K⁺-ATPase activity, seawater tolerance and plasma growth-hormone levels in Atlantic salmon Salmo salar.
    Handeland SO; Imsland AK; Björnsson BT; Stefansson SO
    J Fish Biol; 2013 Nov; 83(5):1197-209. PubMed ID: 24580662
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Seawater tolerance in Atlantic salmon, Salmo salar L., brown trout, Salmo trutta L., and S. salar × S. trutta hybrids smolt.
    Urke HA; Koksvik J; Arnekleiv JV; Hindar K; Kroglund F; Kristensen T
    Fish Physiol Biochem; 2010 Dec; 36(4):845-53. PubMed ID: 19821045
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of ocean acidification on salinity tolerance and seawater growth of Atlantic salmon Salmo salar smolts.
    McCormick SD; Regish AM
    J Fish Biol; 2018 Sep; 93(3):560-566. PubMed ID: 29934974
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nitric oxide synthase in the gill of Atlantic salmon: colocalization with and inhibition of Na+,K+-ATPase.
    Ebbesson LO; Tipsmark CK; Holmqvist B; Nilsen T; Andersson E; Stefansson SO; Madsen SS
    J Exp Biol; 2005 Mar; 208(Pt 6):1011-7. PubMed ID: 15767302
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A temperature shift on the migratory route similarly impairs hypo-osmoregulatory capacities in two strains of Atlantic salmon (Salmo salar L.) smolts.
    Bernard B; Mandiki SNM; Duchatel V; Rollin X; Kestemont P
    Fish Physiol Biochem; 2019 Aug; 45(4):1245-1260. PubMed ID: 31190261
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intestinal osmoregulatory acclimation and nitrogen metabolism in juveniles of the freshwater marble goby exposed to seawater.
    Chew SF; Tng YY; Wee NL; Tok CY; Wilson JM; Ip YK
    J Comp Physiol B; 2010 Apr; 180(4):511-20. PubMed ID: 20024567
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of salinity and prolactin on gene transcript levels of ion transporters, ion pumps and prolactin receptors in Mozambique tilapia intestine.
    Seale AP; Stagg JJ; Yamaguchi Y; Breves JP; Soma S; Watanabe S; Kaneko T; Cnaani A; Harpaz S; Lerner DT; Grau EG
    Gen Comp Endocrinol; 2014 Sep; 206():146-54. PubMed ID: 25088575
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multiplicity of expression of Na+,K+-ATPase {alpha}-subunit isoforms in the gill of Atlantic salmon (Salmo salar): cellular localisation and absolute quantification in response to salinity change.
    Madsen SS; Kiilerich P; Tipsmark CK
    J Exp Biol; 2009 Jan; 212(Pt 1):78-88. PubMed ID: 19088213
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Vacuolar-type H(+)-ATPase and Na+, K(+)-ATPase expression in gills of Atlantic salmon (Salmo salar) during isolated and combined exposure to hyperoxia and hypercapnia in fresh water.
    Seidelin M; Brauner CJ; Jensen FB; Madsen SS
    Zoolog Sci; 2001 Dec; 18(9):1199-205. PubMed ID: 11911075
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Acclimation of brackish water pearl spot (Etroplus suratensis) to various salinities: relative changes in abundance of branchial Na(+)/K (+)-ATPase and Na (+)/K (+)/2Cl (-) co-transporter in relation to osmoregulatory parameters.
    Chandrasekar S; Nich T; Tripathi G; Sahu NP; Pal AK; Dasgupta S
    Fish Physiol Biochem; 2014 Jun; 40(3):983-96. PubMed ID: 24482094
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of strain origin on osmoregulatory and endocrine parameters of two non-native strains of Atlantic salmon (Salmo salar L.).
    Bernard B; Sobandi KC; Darras V; Rollin X; Mandiki SNM; Kestemont P
    Gen Comp Endocrinol; 2018 Mar; 258():205-212. PubMed ID: 29317213
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Aquaporin expression dynamics in osmoregulatory tissues of Atlantic salmon during smoltification and seawater acclimation.
    Tipsmark CK; Sørensen KJ; Madsen SS
    J Exp Biol; 2010 Feb; 213(3):368-79. PubMed ID: 20086120
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Distinct hormonal regulation of Na(+),K(+)-atpase genes in the gill of Atlantic salmon (Salmo salar L.).
    Tipsmark CK; Madsen SS
    J Endocrinol; 2009 Nov; 203(2):301-10. PubMed ID: 19696099
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Intestinal Na+, K+, 2Cl- cotransporter 2 plays a crucial role in hyperosmotic transitions of a euryhaline teleost.
    Esbaugh AJ; Cutler B
    Physiol Rep; 2016 Nov; 4(22):. PubMed ID: 27881573
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of low environmental salinity on the cellular profiles and expression of Na+, K+-ATPase and Na+, K+, 2Cl- cotransporter 1 of branchial mitochondrion-rich cells in the juvenile marine fish Monodactylus argenteus.
    Kang CK; Liu FC; Chang WB; Lee TH
    Fish Physiol Biochem; 2012 Jun; 38(3):665-78. PubMed ID: 21863333
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Subcellular localization of Na
    Wong MKS; Tsuneoka Y; Tsukada T
    Fish Physiol Biochem; 2023 Aug; 49(4):751-767. PubMed ID: 37464181
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.