These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 35715673)
1. Cyperus rotundus L. drives arable soil infertile by changing the structure of soil bacteria in the rhizosphere, using a maize field as an example. Liu SY; Wei CY; Tong Y; Chen W; Han ZY; Zeng DQ; Tang WW Environ Sci Pollut Res Int; 2022 Nov; 29(52):79579-79593. PubMed ID: 35715673 [TBL] [Abstract][Full Text] [Related]
2. [Nutrient Characteristics and Nitrogen Forms of Rhizosphere Soils Under Four Typical Plants in the Littoral Zone of TGR]. Wang XF; Yuan XZ; Liu H; Zhang L; Yu JJ; Yue JS Huan Jing Ke Xue; 2015 Oct; 36(10):3662-73. PubMed ID: 26841597 [TBL] [Abstract][Full Text] [Related]
3. Bacillus aryabhattai LAD impacts rhizosphere bacterial community structure and promotes maize plant growth. Deng C; Zhang N; Liang X; Huang T; Li B J Sci Food Agric; 2022 Nov; 102(14):6650-6657. PubMed ID: 35603593 [TBL] [Abstract][Full Text] [Related]
4. Polyphasic analysis of the bacterial community in the rhizosphere and roots of Cyperus rotundus L. grown in a petroleum-contaminated soil. Jurelevicius D; Korenblum E; Casella R; Vital RL; Seldin L J Microbiol Biotechnol; 2010 May; 20(5):862-70. PubMed ID: 20519908 [TBL] [Abstract][Full Text] [Related]
5. Phylogenetic analysis of halophyte-associated rhizobacteria and effect of halotolerant and halophilic phosphate-solubilizing biofertilizers on maize growth under salinity stress conditions. Mukhtar S; Zareen M; Khaliq Z; Mehnaz S; Malik KA J Appl Microbiol; 2020 Feb; 128(2):556-573. PubMed ID: 31652362 [TBL] [Abstract][Full Text] [Related]
6. Structure and variation of root-associated bacterial communities of Cyperus rotundus L. in the contaminated soils around Pb/Zn mine sites. Gao P; Song B; Xu R; Sun X; Lin H; Xu F; Li B; Sun W Environ Sci Pollut Res Int; 2021 Nov; 28(41):58523-58535. PubMed ID: 34115291 [TBL] [Abstract][Full Text] [Related]
7. Rhizosphere enzyme activities and microorganisms drive the transformation of organic and inorganic carbon in saline-alkali soil region. Qu Y; Tang J; Liu B; Lyu H; Duan Y; Yang Y; Wang S; Li Z Sci Rep; 2022 Jan; 12(1):1314. PubMed ID: 35079055 [TBL] [Abstract][Full Text] [Related]
8. [Functional Genomics Analysis of Nitrogen and Phosphorus Transformation in Maize Rhizosphere Microorganisms]. Wang XJ; Jiang MT; Li S; Ni HW; Sun B; Liang YT Huan Jing Ke Xue; 2023 Dec; 44(12):7014-7023. PubMed ID: 38098424 [TBL] [Abstract][Full Text] [Related]
9. Screening of high-efficiency nitrogen-fixing bacteria from the traditional Chinese medicine plant Astragalus mongolicus and its effect on plant growth promotion and bacterial communities in the rhizosphere. Shi Z; Guo X; Lei Z; Wang Y; Yang Z; Niu J; Liang J BMC Microbiol; 2023 Oct; 23(1):292. PubMed ID: 37845638 [TBL] [Abstract][Full Text] [Related]
10. [Effects of Transgenic Maize with Wang R; Zhu K; Li G; Liu HF; Wang J; Xiu WM; Zhao JN; Yang DL Huan Jing Ke Xue; 2018 Aug; 39(8):3885-3893. PubMed ID: 29998698 [TBL] [Abstract][Full Text] [Related]
11. [Effects of multifunctional plant rhizosphere promoting bacteria on maize growth in black soil areas in Northeast China]. Chen L; Mi GH; Li KK; Shao H; Hu D; Yang JP; Sui XH; Chen WX Ying Yong Sheng Tai Xue Bao; 2020 Aug; 31(8):2759-2766. PubMed ID: 34494799 [TBL] [Abstract][Full Text] [Related]
12. Belowground Interactions Impact the Soil Bacterial Community, Soil Fertility, and Crop Yield in Maize/Peanut Intercropping Systems. Li Q; Chen J; Wu L; Luo X; Li N; Arafat Y; Lin S; Lin W Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29470429 [TBL] [Abstract][Full Text] [Related]
13. Effectsof growth-promoting rhizobacteria on maize growth and rhizosphere microbial community under conservation tillage in Northeast China. Chen L; Hao Z; Li K; Sha Y; Wang E; Sui X; Mi G; Tian C; Chen W Microb Biotechnol; 2021 Mar; 14(2):535-550. PubMed ID: 33166080 [TBL] [Abstract][Full Text] [Related]
14. Effects of plant growth-promoting rhizobacteria on blueberry growth and rhizosphere soil microenvironment. Wang M; Yang X PeerJ; 2024; 12():e16992. PubMed ID: 38426138 [TBL] [Abstract][Full Text] [Related]
15. Comparative analysis of bacterial community structure in the rhizosphere of maize by high-throughput pyrosequencing. Yang Y; Wang N; Guo X; Zhang Y; Ye B PLoS One; 2017; 12(5):e0178425. PubMed ID: 28542542 [TBL] [Abstract][Full Text] [Related]
16. Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution. Hassan W; Bano R; Bashir F; David J Environ Sci Pollut Res Int; 2014 Sep; 21(18):10983-96. PubMed ID: 24888619 [TBL] [Abstract][Full Text] [Related]
17. [Dynamics of soil enzyme activity and nutrient content in intercropped cotton rhizosphere and non-rhizosphere]. Meng Y; Wang L; Zhou Z; Wang Y; Zhang L; Bian H; Zhang S; Chen B Ying Yong Sheng Tai Xue Bao; 2005 Nov; 16(11):2076-80. PubMed ID: 16471342 [TBL] [Abstract][Full Text] [Related]
18. Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity. Ullah S; Bano A Can J Microbiol; 2015 Apr; 61(4):307-13. PubMed ID: 25776270 [TBL] [Abstract][Full Text] [Related]
19. Diversity of nitrogen-fixing and phosphorus-solubilizing bacteria associated with the rhizosphere of Andean maize in Ecuador. Sangoquiza-Caiza CA; Pincay-Verdezoto AK; Park CH; Zambrano-Mendoza JL Braz J Biol; 2023; 83():e273632. PubMed ID: 37937624 [TBL] [Abstract][Full Text] [Related]
20. Impacts of maize hybrids with different nitrogen use efficiency on root-associated microbiota based on distinct rhizosphere soil metabolites. Li K; Chen L; Shi W; Hu C; Sha Y; Feng G; Wang E; Chen W; Sui X; Mi G Environ Microbiol; 2023 Feb; 25(2):473-492. PubMed ID: 36451600 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]