BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 35715699)

  • 1. Channelopathy of small- and intermediate-conductance Ca
    Nam YW; Downey M; Rahman MA; Cui M; Zhang M
    Acta Pharmacol Sin; 2023 Feb; 44(2):259-267. PubMed ID: 35715699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Channelopathy-causing mutations in the S
    Orfali R; Nam YW; Nguyen HM; Rahman MA; Yang G; Cui M; Wulff H; Zhang M
    Cell Calcium; 2022 Mar; 102():102538. PubMed ID: 35030515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laminar shear stress upregulates endothelial Ca²⁺-activated K⁺ channels KCa2.3 and KCa3.1 via a Ca²⁺/calmodulin-dependent protein kinase kinase/Akt/p300 cascade.
    Takai J; Santu A; Zheng H; Koh SD; Ohta M; Filimban LM; Lemaître V; Teraoka R; Jo H; Miura H
    Am J Physiol Heart Circ Physiol; 2013 Aug; 305(4):H484-93. PubMed ID: 23792675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacology of Small- and Intermediate-Conductance Calcium-Activated Potassium Channels.
    Brown BM; Shim H; Christophersen P; Wulff H
    Annu Rev Pharmacol Toxicol; 2020 Jan; 60():219-240. PubMed ID: 31337271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel phenolic inhibitors of small/intermediate-conductance Ca²⁺-activated K⁺ channels, KCa3.1 and KCa2.3.
    Oliván-Viguera A; Valero MS; Murillo MD; Wulff H; García-Otín AL; Arbonés-Mainar JM; Köhler R
    PLoS One; 2013; 8(3):e58614. PubMed ID: 23516517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gain-of-Function Mutations in KCNN3 Encoding the Small-Conductance Ca
    Bauer CK; Schneeberger PE; Kortüm F; Altmüller J; Santos-Simarro F; Baker L; Keller-Ramey J; White SM; Campeau PM; Gripp KW; Kutsche K
    Am J Hum Genet; 2019 Jun; 104(6):1139-1157. PubMed ID: 31155282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of S3 and S4 transmembrane domain charged amino acids in channel biogenesis and gating of KCa2.3 and KCa3.1.
    Gao Y; Chotoo CK; Balut CM; Sun F; Bailey MA; Devor DC
    J Biol Chem; 2008 Apr; 283(14):9049-59. PubMed ID: 18227067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelial K
    Li JJ; Zhao XY; Wang Y; Xu R; Di XH; Zhang Y; Yang H; Han MZ; Bai RY; Xie L; Pang ZD; Zhang X; Zhang J; Du XJ; Deng XL; Zhang Y; Xie W
    Arterioscler Thromb Vasc Biol; 2023 May; 43(5):726-738. PubMed ID: 36951065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacological gating modulation of small- and intermediate-conductance Ca(2+)-activated K(+) channels (KCa2.x and KCa3.1).
    Christophersen P; Wulff H
    Channels (Austin); 2015; 9(6):336-43. PubMed ID: 26217968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulmonary hypertension in wild type mice and animals with genetic deficit in KCa2.3 and KCa3.1 channels.
    Wandall-Frostholm C; Skaarup LM; Sadda V; Nielsen G; Hedegaard ER; Mogensen S; Köhler R; Simonsen U
    PLoS One; 2014; 9(5):e97687. PubMed ID: 24858807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of the KCa3.1 channel-calmodulin interactions to the regulation of the KCa3.1 gating process.
    Morales P; Garneau L; Klein H; Lavoie MF; Parent L; Sauvé R
    J Gen Physiol; 2013 Jul; 142(1):37-60. PubMed ID: 23797421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulators of small- and intermediate-conductance calcium-activated potassium channels and their therapeutic indications.
    Wulff H; Kolski-Andreaco A; Sankaranarayanan A; Sabatier JM; Shakkottai V
    Curr Med Chem; 2007; 14(13):1437-57. PubMed ID: 17584055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New positive Ca2+-activated K+ channel gating modulators with selectivity for KCa3.1.
    Coleman N; Brown BM; Oliván-Viguera A; Singh V; Olmstead MM; Valero MS; Köhler R; Wulff H
    Mol Pharmacol; 2014 Sep; 86(3):342-57. PubMed ID: 24958817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PKA reduces the rat and human KCa3.1 current, CaM binding, and Ca2+ signaling, which requires Ser332/334 in the CaM-binding C terminus.
    Wong R; Schlichter LC
    J Neurosci; 2014 Oct; 34(40):13371-83. PubMed ID: 25274816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca
    Orfali R; Albanyan N
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss-of-function K
    Nam YW; Rahman MA; Yang G; Orfali R; Cui M; Zhang M
    Am J Physiol Cell Physiol; 2023 Mar; 324(3):C658-C664. PubMed ID: 36717104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelial Ca+-activated K+ channels in normal and impaired EDHF-dilator responses--relevance to cardiovascular pathologies and drug discovery.
    Grgic I; Kaistha BP; Hoyer J; Köhler R
    Br J Pharmacol; 2009 Jun; 157(4):509-26. PubMed ID: 19302590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small-conductance calcium-activated potassium channels in the heart: expression, regulation and pathological implications.
    Liu T; Li T; Xu D; Wang Y; Zhou Y; Wan J; Huang CL; Tan X
    Philos Trans R Soc Lond B Biol Sci; 2023 Jun; 378(1879):20220171. PubMed ID: 37122223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting the Small- and Intermediate-Conductance Ca-Activated Potassium Channels: The Drug-Binding Pocket at the Channel/Calmodulin Interface.
    Cui M; Qin G; Yu K; Bowers MS; Zhang M
    Neurosignals; 2014; 22(2):65-78. PubMed ID: 25300231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of DOCA-salt hypertension and chronic administration of the FAAH inhibitor URB597 on K
    Kloza M; Baranowska-Kuczko M; Malinowska B; Karpińska O; Harasim-Symbor E; Kasacka I; Kozłowska H
    Vascul Pharmacol; 2017 Dec; 99():65-73. PubMed ID: 29038048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.