These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 35715701)
21. Spatial distribution and vertical variation of arsenic in Guangdong soil profiles, China. Zhang HH; Yuan HX; Hu YG; Wu ZF; Zhu LA; Zhu L; Li FB; Li DQ Environ Pollut; 2006 Nov; 144(2):492-9. PubMed ID: 16563579 [TBL] [Abstract][Full Text] [Related]
22. Comparison of DGT with traditional extraction methods for assessing arsenic bioavailability to Brassica chinensis in different soils. Dai Y; Nasir M; Zhang Y; Gao J; Lv Y; Lv J Chemosphere; 2018 Jan; 191():183-189. PubMed ID: 29032263 [TBL] [Abstract][Full Text] [Related]
23. Arsenic in agricultural soils across China: Distribution pattern, accumulation trend, influencing factors, and risk assessment. Zhou Y; Niu L; Liu K; Yin S; Liu W Sci Total Environ; 2018 Mar; 616-617():156-163. PubMed ID: 29112838 [TBL] [Abstract][Full Text] [Related]
24. Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China. Xiao T; Guha J; Boyle D; Liu CQ; Chen J Sci Total Environ; 2004 Jan; 318(1-3):223-44. PubMed ID: 14654287 [TBL] [Abstract][Full Text] [Related]
25. The concentration and chemical speciation of arsenic in the Nanpan River, the upstream of the Pearl River, China. Yang S; Zhao N; Zhou D; Wei R; Yang B; Pan B Environ Sci Pollut Res Int; 2016 Apr; 23(7):6451-8. PubMed ID: 26627697 [TBL] [Abstract][Full Text] [Related]
26. Use of artificial neural network to evaluate cadmium contamination in farmland soils in a karst area with naturally high background values. Li C; Zhang C; Yu T; Liu X; Yang Y; Hou Q; Yang Z; Ma X; Wang L Environ Pollut; 2022 Jul; 304():119234. PubMed ID: 35367285 [TBL] [Abstract][Full Text] [Related]
27. Arsenic availability and uptake by edible rape (Brassica campestris L.) grown in contaminated soils spiked with carboxymethyl cellulose-stabilized ferrihydrite nanoparticles. Huo L; Huang D; Zeng X; Su S; Wang Y; Bai L; Wu C Environ Sci Pollut Res Int; 2018 May; 25(15):15080-15088. PubMed ID: 29557040 [TBL] [Abstract][Full Text] [Related]
28. Evaluation of various approaches to predict cadmium bioavailability to rice grown in soils with high geochemical background in the karst region, Southwestern China. Wen Y; Li W; Yang Z; Zhuo X; Guan DX; Song Y; Guo C; Ji J Environ Pollut; 2020 Mar; 258():113645. PubMed ID: 31796323 [TBL] [Abstract][Full Text] [Related]
29. Enrichment mechanisms of Mo in soil in the karst region Guangxi, China. Lin K; Yang Z; Yu T; Ji W; Liu X; Li B; Wu Z; Li X; Ma X; Wang L; Tang Q Ecotoxicol Environ Saf; 2023 Apr; 255():114808. PubMed ID: 36958262 [TBL] [Abstract][Full Text] [Related]
30. Environmental and human-health risks of As in soils with abnormal arsenic levels located in irrigated agricultural areas of Paracatu (MG), Brazil. Feitosa MM; Alvarenga IFS; Jara MS; Lima GJEO; Vilela FJ; Resende T; Guilherme LRG Ecotoxicol Environ Saf; 2021 Dec; 226():112869. PubMed ID: 34627043 [TBL] [Abstract][Full Text] [Related]
31. Reconstructing spatial pattern of historical cropland in karst areas of Guizhou, Southwest China. Yang L; Zhao C; Jiao S; Li S; Wang L; Li Y Sci Rep; 2022 Dec; 12(1):22391. PubMed ID: 36575243 [TBL] [Abstract][Full Text] [Related]
32. The distribution of arsenic fractions and alkaline phosphatase activities in different soil aggregates following four months As(V) ageing. Lu G; Tian H; Wang Z; Li H; Mallavarapu M; He W Chemosphere; 2019 Dec; 236():124355. PubMed ID: 31325832 [TBL] [Abstract][Full Text] [Related]
33. Arsenic availability in rice from a mining area: is amorphous iron oxide-bound arsenic a source or sink? Liu C; Yu HY; Liu C; Li F; Xu X; Wang Q Environ Pollut; 2015 Apr; 199():95-101. PubMed ID: 25638690 [TBL] [Abstract][Full Text] [Related]
34. The distributions, contamination status, and health risk assessments of mercury and arsenic in the soils from the Yellow River Delta of China. Ge M; Liu G; Liu H; Yuan Z; Liu Y Environ Sci Pollut Res Int; 2019 Dec; 26(34):35094-35106. PubMed ID: 31679141 [TBL] [Abstract][Full Text] [Related]
35. Thallium speciation and extractability in a thallium- and arsenic-rich soil developed from mineralized carbonate rock. Voegelin A; Pfenninger N; Petrikis J; Majzlan J; Plötze M; Senn AC; Mangold S; Steininger R; Göttlicher J Environ Sci Technol; 2015 May; 49(9):5390-8. PubMed ID: 25885948 [TBL] [Abstract][Full Text] [Related]
36. The bioaccessibility and fractionation of arsenic in anoxic soils as a function of stabilization using low-cost Fe/Al-based materials: A long-term experiment. Hou Q; Han D; Zhang Y; Han M; Huang G; Xiao L Ecotoxicol Environ Saf; 2020 Mar; 191():110210. PubMed ID: 31958624 [TBL] [Abstract][Full Text] [Related]
37. Potential anthropogenic mobilisation of mercury and arsenic from soils on mineralised rocks, Northland, New Zealand. Craw D J Environ Manage; 2005 Feb; 74(3):283-92. PubMed ID: 15644268 [TBL] [Abstract][Full Text] [Related]
38. Immobilization and release risk of arsenic associated with partitioning and reactivity of iron oxide minerals in paddy soils. Ouyang X; Ma J; Weng L; Chen Y; Wei R; Zhao J; Ren Z; Peng H; Liao Z; Li Y Environ Sci Pollut Res Int; 2020 Oct; 27(29):36377-36390. PubMed ID: 32562227 [TBL] [Abstract][Full Text] [Related]
39. [Sources Identification, Ecological Risk Assessment, and Controlling Factors of Potentially Toxic Elements in Typical Lead-Zinc Mine Area, Guizhou Province, Southwest China]. Zhang FG; Peng M; He L; Ma HH Huan Jing Ke Xue; 2022 Apr; 43(4):2081-2093. PubMed ID: 35393832 [TBL] [Abstract][Full Text] [Related]
40. Arsenic bio-accessibility and bioaccumulation in aged pesticide contaminated soils: A multiline investigation to understand environmental risk. Rahman MS; Reichelt-Brushet AJ; Clark MW; Farzana T; Yee LH Sci Total Environ; 2017 Mar; 581-582():782-793. PubMed ID: 28065542 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]